Tuning the Structure of Metal Phosphonate Using Uncoordinating Methyl group: Syntheses, Structures and Properties of a Series of Metal Diphosphonates

Si-Fu Tang, Liang-Jun Li, Xiao-Xia Lv, Chao Wang and Xue-Bo Zhao

Table S1. Selected angles of compounds 1-8.

1				
O(2)#1-Mn(1)-O(2)#2	179.03(10)	O(1)#3-Mn(1)-O(1W)	88.19(10)	
O(2)#1-Mn(1)-O(1)#3	93.21(7)	O(1)-Mn(1)-O(1W)	172.85(9)	
O(2)#2-Mn(1)-O(1)#3	87.43(7)	O(2)#1-Mn(1)-O(1W)#3	92.24(9)	
O(2)#1-Mn(1)-O(1)	87.43(7)	O(2)#2-Mn(1)-O(1W)#3	87.06(9)	
O(2)#2-Mn(1)-O(1)	93.21(7)	O(1)#3-Mn(1)-O(1W)#3	172.85(9)	
O(1)#3-Mn(1)-O(1)	96.67(11)	O(1)-Mn(1)-O(1W)#3	88.19(10)	
O(2)#1-Mn(1)-O(1W)	87.06(9)	O(1W)-Mn(1)-O(1W)#3	87.47(16)	
O(2)#2-Mn(1)-O(1W)	92.24(9)			
2				
O(1W)-Co(1)-O(2W)	88.49(9)	O(6W)-Co(1)-O(3W)	87.33(9)	
O(1W)-Co(1)-O(6W)	177.74(8)	O(4W)-Co(1)-O(3W)	172.55(8)	
O(2W)-Co(1)-O(6W)	92.82(9)	O(1W)-Co(1)-O(5W)	92.27(9)	
O(1W)-Co(1)-O(4W)	93.78(9)	O(2W)-Co(1)-O(5W)	175.97(9)	
O(2W)-Co(1)-O(4W)	D(2W)-Co(1)-O(4W) 87.22(9) O(6W)-Co(1)-O(5W)		86.30(9)	
O(6W)-Co(1)-O(4W)	88.12(9)	O(4W)-Co(1)-O(5W)	96.67(8)	
O(1W)-Co(1)-O(3W)	90.90(9)	O(3W)-Co(1)-O(5W)	88.92(8)	
O(2W)-Co(1)-O(3W)	87.11(9)			
3				
O(1W)-Co(1)-O(1W)#1	180.0	O(3W)#1-Co(1)-O(2W)	90.44(15)	
O(1W)-Co(1)-O(3W)#1	89.07(15)	O(3W)-Co(1)-O(2W)	89.56(15)	
O(1W)#1-Co(1)-O(3W)#1	90.93(15)	O(1W)-Co(1)-O(2W)#1	91.03(17)	
O(1W)-Co(1)-O(3W)	90.93(15)	O(1W)#1-Co(1)-O(2W)#1	88.97(17)	
O(1W)#1-Co(1)-O(3W)	89.07(15)	O(3W)#1-Co(1)-O(2W)#1	89.49(15)	
O(3W)#1-Co(1)-O(3W)	180.0	O(3W)-Co(1)-O(2W)#1	90.51(15)	
O(1W)-Co(1)-O(2W)	88.97(17)	O(2W)-Co(1)-O(2W)#1	180.0	
O(1W)#1-Co(1)-O(2W)	91.03(17)			
4				
O(1W)-Ni(1)-O(2W)	87.40(10)	O(6W)-Ni(1)-O(3W)	87.39(9)	
O(1W)-Ni(1)-O(6W)	177.92(10)	O(4W)-Ni(1)-O(3W)	173.21(9)	
O(2W)-Ni(1)-O(6W)	93.06(10)	O(1W)-Ni(1)-O(5W)	92.69(10)	
O(1W)-Ni(1)-O(4W)	92.99(10)	O(2W)-Ni(1)-O(5W)	176.98(10)	
O(2W)-Ni(1)-O(4W)	86.96(10)	O(6W)-Ni(1)-O(5W)	86.74(9)	
O(6W)-Ni(1)-O(4W)	89.06(9)	O(4W)-Ni(1)-O(5W)	96.05(9)	

O(1W)-Ni(1)-O(3W)	90.61(9)	O(3W)-Ni(1)-O(5W)	89.53(9)			
O(2W)-Ni(1)-O(3W)	87.45(10)					
5						
O(2)-Cu(1)-O(2)#1	180.0	O(2)-Cu(1)-O(3)#3	87.99(11)			
O(2)-Cu(1)-O(3)#2	92.01(11)	O(2)#1-Cu(1)-O(3)#3	92.01(11)			
O(2)#1-Cu(1)-O(3)#2	87.99(11)	O(3)#2-Cu(1)-O(3)#3	180.0			
6						
O(3W)-Zn(1)-O(3W)#1	180.0	O(1W)-Zn(1)-O(2W)	88.76(12)			
O(3W)-Zn(1)-O(1W)	90.90(11)	O(1W)#1-Zn(1)-O(2W)	91.24(12)			
O(3W)#1-Zn(1)-O(1W)	89.10(11)	O(3W)-Zn(1)-O(2W)#1	89.94(11)			
O(3W)-Zn(1)-O(1W)#1	89.10(11)	O(3W)#1-Zn(1)-O(2W)#1	90.06(11)			
O(3W)#1-Zn(1)-O(1W)#1	90.90(11)	O(1W)-Zn(1)-O(2W)#1	91.24(12)			
O(1W)-Zn(1)-O(1W)#1	180.0	O(1W)#1-Zn(1)-O(2W)#1	88.76(13)			
O(3W)-Zn(1)-O(2W)	89.94(11)	O(2W)-Zn(1)-O(2W)#1	180.0			
O(3W)#1-Zn(1)-O(2W)	90.06(11)					
7						
O(1)-Zn(1)-O(1)#1	130.28(11)	O(1)-Zn(1)-O(1W)	105.88(7)			
O(1)-Zn(1)-O(2W)	102.19(7)	O(1)#1-Zn(1)-O(1W)	105.88(7)			
O(1)#1-Zn(1)-O(2W)	102.19(7)	O(2W)-Zn(1)-O(1W)	109.24(15)			
8						
O(3)#1-Cd(1)-O(3)	179.14(14)	O(2)#2-Cd(1)-O(1W)	84.98(13)			
O(3)#1-Cd(1)-O(2)#2	94.49(11)	O(2)#3-Cd(1)-O(1W)	167.80(13)			
O(3)-Cd(1)-O(2)#2	86.06(10)	O(3)#1-Cd(1)-O(1W)#1	96.52(13)			
O(3)#1-Cd(1)-O(2)#3	86.06(11)	O(3)-Cd(1)-O(1W)#1	82.87(13)			
O(3)-Cd(1)-O(2)#3	94.49(11)	O(2)#2-Cd(1)-O(1W)#1	167.80(13)			
O(2)#2-Cd(1)-O(2)#3	101.03(16)	O(2)#3-Cd(1)-O(1W)#1	84.98(13)			
O(3)#1-Cd(1)-O(1W)	82.87(13)	O(1W)-Cd(1)-O(1W)#1	91.2(2)			
O(3)-Cd(1)-O(1W)	96.52(13)					

Symmetry transformations used to generate equivalent atoms: For 1: #1 x, -y, z-1/2; #2 -x+1, -y, -z+2; #3 -x+1, y, -z+3/2; #4 -x+3/2, -y+1/2, -z+2. For **3** and **6**: #1 -x+1, -y+1,-z. For 5: #1 -x+2, -y+2, -z; #2 -x+1, -y+2, -z; #3 x+1, y, z. For **7**: #1 x, -y+3/2, z For **8**: #1 -x+1,y,-z+1/2; #2 x,-y,z-1/2; #3 -x+1,-y,-z+1.

Table S2 Some O-H···O interactions found for compounds 1-8.

D-H	Н…А	D…A	<(DHA)	
1				
0.82	1.83	2.638(2)	168.2	O3-H3A…O1_\$1
2				
0.82	1.89	2.674(3)	158.8	O2-H2A…O6_\$1
0.85	1.82	2.667(3)	176.4	O1W-H2W…O5_\$3
0.85	1.99	2.832(3)	168.5	O2W-H3W…O3W_\$4
0.85	2.00	2.748(3)	146.0	O2W-H4W…O4W_\$5
0.85	1.94	2.787(3)	171.4	O3W-H6W…O8W_\$6

0.05	1.0.0	0.504(0)	1.55.0			
0.85	1.86	2.704(3)	177.0	03W-H5W…07W		
0.85	1.98	2.681(3)	139.4	04W-H7W…O3		
0.85	1.86	2.707(3)	171.6	O6W-H11W···O3_\$5		
0.85	1.96	2.806(3)	174.7	O6W-H12W…O7W_\$2		
0.85	1.96	2.811(3)	175.9	O7W-H14W…O6_\$3		
0.85	1.94	2.787(3)	177.4	08W-H15W…O3_\$7		
3						
0.82	1.66	2.445(5)	160.7	O1-H1A…O4_\$1		
0.82	1.74	2.545(5)	166.0	O2-H2A…O6_\$2		
0.82	1.76	2.578(5)	177.6	O5-H5A…O3_\$3		
0.85	1.87	2.701(7)	165.1	O1W-H1W…O4W		
0.85	1.99	2.823(7)	167.7	O1W-H1W…O4W_\$4		
0.85	2.00	2.815(5)	161.6	O2W-H3W…O4_\$5		
0.85	1.98	2.785(5)	158.9	O3W-H5W…O6_\$1		
4						
0.82	1.89	2.668(3)	159.0	O2-H2A···O6_\$1		
0.85	1.82	2.672(3)	177.4	O1W-H2W…O5_\$3		
0.85	2.00	2.844(3)	169.5	O2W-H3W…O3W_\$4		
0.85	2.00	2.755(3)	146.7	O2W-H4W…O4W_\$5		
0.85	1.93	2.778(3)	171.7	O3W-H6W…O8W_\$6		
0.85	1.86	2.710(3)	176.3	O3W-H5W…O7W		
0.85	1.98	2.680(3)	139.1	O4W-H7W…O3		
0.85	1.85	2.696(3)	172.6	O6W-H11W…O3_\$5		
0.85	1.96	2.807(3)	175.5	O6W-H12W…O7W_\$2		
0.85	1.96	2.804(3)	175.3	O7W-H14W…O6_\$3		
0.85	1.93	2.782(3)	177.5	O8W-H15W…O3_\$7		
6	6					
0.82	1.66	2.449(3)	160.9	O1-H1A…O4_\$1		
0.82	1.75	2.555(3)	166.2	O2-H2A…O6_\$2		
0.82	1.77	2.588(3)	177.5	O5-H5A…O3_\$3		
0.85	1.87	2.703(5)	165.8	O1W-H1W···O4W		
0.85	1.98	2.816(5)	167.3	O1W-H1W…O4W_\$4		
0.85	2.00	2.815(4)	161.7	O2W-H3W····O4_\$5		
0.85	1.98	2.794(3)	159.3	O3W-H5W···O6_\$1		
7						
0.82	1.79	2.545(2)	153.1	O2-H2A…O3 \$1		
0.85	1.85	2.696(2)	176.3	O1W-H1WO3 \$2		
0.85	1.88	2.724(2)	173.6	O2W-H3WO2 \$3		
8						
0.82	1.84	2.654(4)	169.3	O1-H1A…O2 \$1		

Operators for generating equivalent atoms: 1: \$1x, -y+1, z+1/2. 2 and 4: \$1 x, y-1, z; \$2 x-1, y, z; \$3 x+1, y, z; \$4 -x+2, -y+1, -z; \$5 -x+1, -y+1, -z; \$6 -x+1, -y+2, -z; \$7 x, y+1, z. 3 and 6: \$1 -x+2, -y+2, -z; \$2 -x+2, y-1/2, -z+1/2; \$3 -x+2, y+1/2, -z+1/2;

\$4 -x+1, y-1/2, -z-1/2; \$5 -x+2, -y+1, -z. 5: \$1 x-1, y, z; \$2 -x+2, -y+1, -z; \$3 x+1, y-1, z. 7: \$1 x, -y, z-1/2; \$2 -x+1, y, -z+1/2. 7: \$1 x-1/2, y, -z-1/2; \$2 x+1/2, y, -z-1/2; \$3 x+1/2, y, -z+1/2. 8: \$1 x, -y, z-1/2; \$2 -x+1, y, -z+1/2; \$3 x, -y+1, z-1/2.

Figure S1. Three-dimensional packing diagram of compound 1 viewing along *b*-direction. The CPO₃ tetrahedrons and MnO_6 octahedrons are shaded in pink and green respectively. O-H…O interactions are shown as dash lines.

Figure S2. Three-dimensional packing diagram of compound **2** viewing along *b*direction. The CPO₃ tetrahedrons and CoO₆ octahedrons are shaded in pink and green respectively. O-H…O interactions are shown as dash lines.

Figure S3. Three-dimensional packing diagram of compound 7 viewing along c-direction. The CPO₃ tetrahedrons and CdO₆ octahedrons are shaded in pink and green respectively.

Table S3. Comparison of the structures reported in this paper and those from literature synthesis condition used for 1,4-phenylendiphosphonic acid.

	Synthesis of	conditions	product	structure
Со	Literature method	Co(en) ₃ Cl ₃ (0.3 mmol, 0.12 g), H ₄ L (0.3 mmol, 0.0798 g), 8 ml H ₂ O, pH=3-4, 140 °C, 54 h	Blue green powder and pink plate crystals	Unknown phases (see Figure S11)
	This paper	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pink block crystals	Compound 2
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pink block crystals	Compound 3
Ni	Literature method	NiSO ₄ · $6H_2O$ (0.2 mmol, 0.0525 g), H ₄ L (0.2 mmol, 0.0532 g), 8 ml H ₂ O, pH=3-4, 140 °C, 54 h	Clear solution	
		NiSO ₄ ·6H ₂ O (0.2 mmol, 0.0525 g), H ₄ L (0.2 mmol, 0.0532 g), 2 ml H ₂ O, pH=3-4, 140 °C, 54 h	Small green block crystals	Same to that of compound 4 (see Figure S12)
	This paper	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Green block crystals	Compound 4
Zn	Literature method	ZnCl ₂ (1 mmol, 0.136 g), H ₄ L (0.5 mmol, 0.1331 g), 60 °C, 7 days	Small colorless crystals	Compound 7
	This paper	H ₄ L (0.0665 g), ZnCl ₂ (0.0623 g), 3 mL H ₂ O, 160 °C, 3 days		Compound 6

Cu	Literature	CuSO ₄ ·5H ₂ O (1 mmol, 0.2497 g),	Blue plate	Same to that
	method	H ₄ L (0.25 mmol, 0.0665 g), 60 °C 1	crystals	of
		day		compound 5
				(see Figure
				S13)
	This	H ₄ L (0.0887 g, 0.3333 mmol),	Blue plate	Compound 5
	paper	$CuSO_4 \cdot 5H_2O$ (0.1665 g, 0.6666	crystals	
		mmol), and 10 mL H ₂ O, 160 °C, 3		
		days		

Figure S4. Comparison of simulated and experimental XRD pattern of compound 1.

Figure S5. Comparison of simulated and experimental XRD pattern of compound 2.

Figure S6. Comparison of simulated and experimental XRD pattern of compound 3.

Figure S7. Comparison of simulated and experimental XRD pattern of compound 4.

Figure S8. Comparison of simulated and experimental XRD pattern of compound 5.

Figure S9. Comparison of simulated and experimental XRD pattern of compound 6.

Figure S10. Comparison of simulated and experimental XRD pattern of compound 7.

Figure S10. Comparison of simulated and experimental XRD pattern of compound 8.

Figure S11. Comparison of the XRD pattern of the products synthesized from Co(en)₃Cl₃ and H4L and those from simulated compounds **2** and **3** and simulated from Co₂(O₃PC₆H₄PO₃)(H₂O)₂ reported in the literature (D.-K. Cao, S. Gao, L.-M. Zheng, *J. Solid State Chem.*, 2004, **177**, 2311-2315.).

Figure S12. Comparison of the simulated and experimental XRD pattern of the product synthesized from $NiSO_4 \cdot 6H_2O$ and H_4L using literature method.

Figure S13. Comparison of the simulated and experimental XRD pattern of the product synthesized from $CuSO_4 \cdot 5H_2O$ and H4L using literature method.