Supplementary Information

Syntheses, structures and luminescent properties of six divalent metal terephthalate coordination polymers based on three new flexible bis(imidazole) ligands

Wei-Guan Yuan, Fang Xiong, Hong-Ling Zhang, Wei Tang, Shu-Fang Zhang, Zhan He, Lin-Hai Jing and Da-Bin Qin*

Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, School of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, P. R. China. E-mail: qdbkyl@cwnu.edu.cn Fax: (+86)-817-256-8081.

Fig. S1. The ¹H NMR spectra of L1

Fig. S3. The ¹H NMR spectra of L2

Fig. S5. The ¹H NMR spectra of L3

Fig. S6. The ¹³C NMR spectra of L3

Fig. S7. View of the linear chain constructed by p-bdc^{2–}ligands and Cd ions in compound 1

Fig. S8. View of the linear chain constructed by p-bdc^{2–}ligands and Co ions in compound 2

Fig. S9. Topological representation of 1D network of compound 3

Fig. S10. Schematic view of a wavelike chain constructed by p-bdc^{2–} ligands and Zn cations in compound 4

Fig. S11. Schematic representation of the basic building unit of 2D framework in compound 4

Fig. S12. Schematic representation of the basic building unit of 2D framework in compound 5

Fig. S13. Schematic view of a linear chain constructed by p-bdc²⁻ ligands and Co cations in compound **6**

Fig. S14. Schematic representation of 2D topology of 6 (the pink sticks represent the Co center, green sticks represent the L3 ligand and the blue sticks represent p-bdc^{2–}).

Fig. S15. The theoretical and experimental PXRD pattern of 1

Fig. S16. The theoretical and experimental PXRD pattern of 2

Fig. S17. The theoretical and experimental PXRD pattern of 3

Fig. S18. The theoretical and experimental PXRD pattern of 4

Fig. S19. The theoretical and experimental PXRD pattern of 5

Fig. S20. The theoretical and experimental PXRD pattern of 6

Fig. S22. Solid-state photoluminescence spectra for compounds 1-6

Fig. S23. Solid-state UV-vis diffuse reflectance spectra for compounds 1-6

Table S1. Selected bond distances (Å) and angles (°) for 1.

	()	0 - ()	
Cd(1)-O(5)	2.230(3)	Cd(1)-N(1)	2.250(3)
Cd(1)-O(3)	2.307(2)	Cd(1)-N(4)	2.264(3)
Cd(1)-O(4)	2.372(2)		
O(5)-Cd(1)-N(1)	120.38(9)	O(5)-Cd(1)-N(4)	98.48(10)
N(1)-Cd(1)-N(4)	92.32(10)	O(5)-Cd(1)-O(3)	116.06(10)
N(1)-Cd(1)-O(3)	96.99(9)	N(4)-Cd(1)-O(3)	132.15(9)
O(5)-Cd(1)-O(4)	103.63(9)	N(1)-Cd(1)-O(4)	135.64(9)
N(4)-Cd(1)-O(4)	86.20(9)	O(3)-Cd(1)-O(4)	55.33(8)

Symmetry transformations used to generate equivalent atoms: $^{#1}1+x$, y, z; $^{#2}x$, 1.5-y, 0.5+z.

Table S2. Selected bond distances (Å) and angles (°) for 2.

Table 52. Selected bolid distances (T) and angles () for 2.				
Co(1)-O(3)	2.083(6)	Co(1)-N(1)	2.089(8)	
Co(1)- N(4)	2.095(8)	Co(1)-O(6)	2.116(6)	
Co(1)-O(2W)	2.156(7)	Co(1)- O(1W)	2.158(7)	
O(3)-Co(1)-N(1)	90. 8(3)	O(3)-Co(1)-N(4)	90.6(3)	
N(1)-Co(1)-N(4)	178.5(3)	O(3)-Co(1)-O(6)	176. 6(3)	
N(1)-Co(1)-O(6)	90.7(3)	N(4)-Co(1)-O(6)	88.0(3)	

O(3)-Co(1)-O(2W)	92.0(2)	N(1)-Co(1)-O(2W)	89.8(3)
N(4)-Co(1)-O(2W)	90.7(3)	O(6)-Co(1)-O(2W)	84.9(3)
O(3)-Co(1)-O(1W)	92.9(3)	N(1)-Co(1)-O(1W)	89.8(3)
N(4)-Co(1)-O(1W)	89.5(3)	O(6)-Co(1)-O(1W)	90.2(3)
O(2W)-Co(1)-O(1W)	175.1(2)		

Symmetry transformations used to generate equivalent atoms: #1x-2, y-1, z; #21-x, -y,

1-x, 3+z.

Zn(1)-O5	1.942(3)	Zn(1)-N5	1.978(4)
Zn(1)-N1	1.982(4)	Zn(1)-O3	1.987(3)
Zn(2)-O9 ^{#1}	1.920(4)	Zn(2)-O8	1.929(4)
Zn(2)-N4 ^{#1}	1.957(5)	Zn(2)-N8 ^{#3}	1.968(4)
O(5)- Zn(1)-N(5)	103. 47(16)	O(5)- Zn(1)-N(1)	108.85(16)
N(5)- Zn(1)-N(1)	120.20(17)	O(5)- Zn(1)-O(3)	96. 70(15)
N(5)- Zn(1)-O(3)	109.43(15)	N(1)- Zn(1)-O(3)	114.89(16)
O(9) ^{#1} - Zn(2)-O(8)	96.81(16)	O(9)- Zn(2)-N(4) ^{#1}	110.20(17)
O(8)- Zn(2)-N(4) ^{#1}	107.76(18)	$O(9)^{#1}$ - Zn(2)-N(8) ^{#3}	112.77(18)
O(8)- Zn(2)-N(8) ^{#3}	116.32(17)	$N(4)^{\#1}$ - $Zn(2)$ - $N(8)^{\#3}$	111.95(19)

Table S3. Selected bond distances (Å) and angles (°) for 3.

Symmetry transformations used to generate equivalent atoms: ^{#1}3-x, 1-y, 1-z; ^{#2}x-2, y-1, z; ^{#3}x+2, y+1, z.

Table S4. Selected bond distances (Å) and angles (°) for 4.

Zn(1)-O4	1.930(3)	Zn(1)-N1	2.005(3)
Zn(1)-O6 ^{#1}	2.007(4)	Zn(1)- N4 ^{#2}	2.033(3)
Zn(1)-O5	2.499(6)		
O(4)- Zn(1)-N(1)	115. 58(13)	O(4)- Zn(1)- O(6)	108.50(16)
N(1)- Zn(1)- O(6) ^{#1}	104.17(14)	O(4)- Zn(1)- N(4)	95.35(13)
N(1)- Zn(1)- N(4)	102.83(13)	O(6) ^{#1} - Zn(1)- N(4) ^{#2}	133.68(18)
O(6)- Zn(1)- N(5)	55.49(17)	O(5)- Zn(1)- N(4)	82.86(16)

O(5)- Zn(1)- N(1)	101.04(16)	O(5)- Zn(1)- O(4)	146.81(16)
O(5)- Zn(1)- O(6)	55.49(17)		

Symmetry transformations used to generate equivalent atoms: #11-x, -0.5+y, 1.5-z; #21.5-x, -0.5+y, z.

Table S5. Selected bond distances (Å) and angles (°) for 5.

Co(1)-O5	2.041(6)	Co(1)-N1	2.087(7)
Co(1)- N4 ^{#1}	2.113(9)	Co(1)-O3	2.169(5)
Co(1)-O4	2.246(6)	Co(1)- O1W	2.136(6)
O(5)-Co(1)-N(1)	101.6(3)	O(5)-Co(1)- N(4) ^{#1}	92.3(3)
N(1)-Co(1)- N(4) ^{#1}	89.4(3)	O(5)-Co(1)- O(1W)	89.8(2)
N(1)-Co(1)- O(1W)	91.7(3)	N(4) ^{#1} -Co(1)- O(1W)	177.4(3)
O(5)-Co(1)-O(3)	103.6(2)	N(1)-Co(1)-O(3)	154.7(3)
N(4)-Co(1)-O(3)	90.8(3)	O(1W)-Co(1)-O(3)	87.4(2)
O(5)-Co(1)-O(4)	162.2(2)	N(1)-Co(1)-O(4)	95.4(2)
N(4) ^{#1} -Co(1)-O(4)	92.9(3)	O(1W)-Co(1)-O(4)	84.6(2)
O(3)-Co(1)-O(4)	59.3(2)		

Symmetry transformations used to generate equivalent atoms: #1-x, 1-y, -z.

 Table S6. Selected bond distances (Å) and angles (°) for 6.

Co(1)-O2 ^{#1}	2.097(3)	Co(1)- O1W ^{#1}	2.098(4)
Co(1)- N1 ^{#1}	2.128(3)		
O(2) ^{#1} -Co(1)- O(2)	180.00(1)	O(2)-Co(1)- O(1W)	88.19(12)
O(2) ^{#1} -Co(1)- O(1W)	91.81(12)	O(1W)-Co(1)-O(1W)	180.00(1)
O(2) ^{#1} -Co(1)- N(1)	94.37(11)	O(2)-Co(1)- N(1) ^{#1}	85.63(11)
O(1W) ^{#1} -Co(1)- N(1) ^{#1}	88.63(14)	O(1W)-Co(1)- N(1) ^{#1}	91.37(14)
N(1) ^{#1} -Co(1)- N(1)	180.00(2)		

Symmetry transformations used to generate equivalent atoms: #1-x, -2-y, 2+z.