Electronic Supplementary Information

Solvent-mediated assembly of chiral/achiral hydrophilic Ca(II)– tetrafluoroterephthalate coordination frameworks: 3D chiral water aggregation, structural transformation and selective CO₂ adsorption

Sheng-Chun Chen,^{ab} Feng Tian,^a Kun-Lin Huang,^{*c} Cheng-Peng Li,^d Jing Zhong,^a Ming-Yang He,^{ab} Zhi-Hui Zhang,^a Hong-Ning Wang,^a Miao Du^{*d} and Qun Chen^{*ab}

^a School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China. E-mail: chenqunjpu@yahoo.com

^b School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, P. R. China.

^c College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China. E-mail: kunlin@cqnu.edu.cn

^d College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, P. R. China. E-mail: dumiao@public.tpt.tj.cn

Complex 1					
Ca1–O1	2.335(3)	Ca1–O1#2	2.335(3)	Ca1–O2	2.556(3)
Ca1–O2#2	2.556(3)	Ca1–O2#3	2.419(3)	Ca1–O2#4	2.419(3)
Ca1–O1WB	2.280(1)				
O1–Ca1–O1 WB	106.4(7)	O1WB-Ca1-O1#2	92.5(6)	O1WB–Ca1–O2	142.2(6)
O1WB–Ca1–O2#2	161.1(9)	O1WB-Ca1-O2#3	92.5(7)	O1WB–Ca1–O2#4	74.4(7)
O1–Ca1–O1#2	160.9(1)	O1–Ca1–O2	80.73(9)	O1–Ca1–O2#2	82.04(9)
O1–Ca1–O2#3	81.22(9)	O1–Ca1–O2#4	101.00(9)	O2–Ca1–O2#2	50.8(1)
O2–Ca1–O2#3	121.39(8)	O2–Ca1–O2#4	71.8(1)	O2#3-Ca1-O2#4	166.8(2)
Complex 2					
Ca1–O1	2.457(4)	Ca1–O1#2	2.457(4)	Ca1–O2#1	2.745(4)
Cal-O3	2.377(4)	Ca1–O3#2	2.377(4)	Ca1–O3#3	2.338(5)
O1–Ca1–O1#2	80.2(1)	O1–Ca1–O2#1	123.3(1)	O1–Ca1–O2#3	82.1(1)
O1–Ca1–O3	87.1(1)	O1–Ca1–O3#2	146.6(1)	O2#1-Ca1-O2#3	148.9(1)
O2#1-Ca1-O3	79.4(1)	O2#1-Ca1-O3#2	84.8(1)	O3–Ca1–O3#2	118.3(1)
Complex 3					
Ca1–O1	2.599(1)	Ca1–O1#1	2.599(1)	Ca1–O3	2.431(2)
Ca1–O4	2.60(1)	Ca1–O4#1	2.59(1)	Ca1–O4#2	2.557(1)
Ca1–O4#4	2.557(1)	Cal-O5	2.449(2)	Ca1–O5#3	2.468(1)
O1–Ca1–O1#1	123.38(6)	O1–Ca1–O3	118.27(2)	O1–Ca1–O4	67.75(4)
O1–Ca1–O4#1	133.73(5)	O1–Ca1–O4#2	133.05(5)	O1–Ca1–O4#4	66.34(4)
O1–Ca1–O5	71.45(4)	O1–Ca1–O5#3	72.70(3)	O3–Ca1–O4	72.80(5)
O3–Ca1–O4#2	70.72(5)	O3–Ca1–O5	129.46(6)	O3–Ca1–O5#3	131.49(6)
O4–Ca1–O4#1	74.83(6)	O4–Ca1–O4#2	143.50(6)	O4–Ca1–O4#4	93.20(5)
O4–Ca1–O5	139.21(3)	O4–Ca1–O5#3	69.13(5)	O4#2-Ca1-O4#4	76.00(6)
O4#4–Ca1–O5	69.97(5)	O5–Ca1–O5#3	99.05(7)		

Table S1. The selected bond distances (Å) and angles (deg) for complexes $1-3^{a}$

^a Symmetry transformations used to generate equivalent atoms: For 1, #2: x, y, -z + 2; #3: -x + 1, -y + 1, z + 1/2; #4: -x + 1, -y + 1, -z + 3/2; For 2, #1: -x + 1, -y + 1, -z; #2: -x + 1, y, -z + 1/2; #3: x, -y + 1, z + 1/2;
For 3, #1: x, -y + 3/2, z; #2: x + 1, -y + 3/2, z; #3: x − 1, y, z; #4: x + 1, y, z.

Fig. S1 TGA curves of complexes 1–3.

Fig. S2 XRPD patterns for: (a) 1 as simulated from the single-crystal data; (b) as-synthesized 1; and (c) prepared by dehydrating 1 at 160 °C for 6 h.

Fig. S3 XRPD patterns for: (a) 2 as simulated from the single-crystal data; (b) as-synthesized 2.

Fig. S4 XRPD patterns for: (a) 3 as simulated from the single-crystal data; (b) as-synthesized 3.