Effect of polyoxoanions and amide groups coordination

modes on the assembly of polyoxometalate-based metal-

organic complexes constructed from a semi-rigid bis-

pyridyl-bis-amide ligand

Xiuli Wang,*^a Zhihan Chang, Hongyan Lin, Aixiang Tian, Guocheng Liu, Juwen Zhang,

Danna Liu

Table. S1. Selec	cied bond distances	(A) and angles (^o) for complexes	5 1-4.
	Co	mplex 1	
Cu(1)-N(1)	1.995(12)	Cu(1)–N(4)	1.974(12)
Cu(1)–O(1)	2.027(9)	Cu(1)–O(1W)	2.054(10)
Cu(1)–O(2)	2.274(9)	O(1)–Cu(1)–O(1W)	159.9(4)
N(4) - Cu(1) - N(1)	173.5(5)	N(4) –Cu(1)–O(2)	97.6(4)
N(4) –Cu(1)–O(1)	85.8(4)	N(1)-Cu(1)-O(2)	88.6(4)
N(1)-Cu(1)-O(1)	94.5(4)	O(1)–Cu(1)–O(2)	102.7(4)
N(4) –Cu(1)–O(1W)	85.1(5)	O(1W)–Cu(1)–O(2)	96.2(4)
N(1)-Cu(1)-O(1W)	92.6(5)		
	Con	plex 2	
Cu(1)–O(1)	2.507(11)	Cu(1)–N(1)	1.994(13)
Cu(1)–O(1W)	2.028(12)	Cu(1)–O(2W)	2.234(12)
Cu(1)–N(2)	2.003(15)	Cu(1)–O(3W)	1.983(11)
O(1)–Cu(1)–N(1)	94.91(5)	O(1)–Cu(1)–N(2)	88.83(5)
O(1)–Cu(1)–O(1W)	84.89(6)	O(1)–Cu(1)–O(2W)	174.64(5)
O(3W)–Cu(1)–O(1)	92.51(5)	O(3W)-Cu(1)-N(1)	88.9(5)
O(3W)–Cu(1)–N(2)	91.8(5)	O(3W)–Cu(1)–O(2W)	92.8(5)
N(1)–Cu(1)–N(2)	173.2(6)	N(1)-Cu(1)-O(2W)	95.7(6)
O(1W)–Cu(1)–N(1)	87.53(6)	O(1W)-Cu(1)-N(2)	91.41(5)
O(1W)–Cu(1)–O(2W)	89.83(5)	O(1W)–Cu(1)–O(3W)	175.79(5)
N(2)–Cu(1)–O(2W)	90.93(6)		
	Con	plex 3	
Cu(1)–O(1)	2.529(12)	Cu(1)–O(1W)	2.001(15)
Cu(1)–O(2W)	2.264(15)	Cu(1)–O(3W)	1.976(14)
Cu(1)-N(1)	2.005(16)	Cu(1)–N(2)	1.978(19)
O(3W)–Cu(1)–N(2)	91.8(7)	N(2)-Cu(1)-O(2W)	91.5(8)
O(3W)–Cu(1)–N(1)	87.5(6)	N(1)-Cu(1)-O(2W)	95.3(7)
N(2)-Cu(1)-N(1)	173.1(7)	O(2W)–Cu(1)–O(1W)	89.6(7)
O(1W)-Cu(1)-O(3W)	175.4(7)	N(1)-Cu(1)-O(1W)	88.4(7)
N(2)-Cu(1)-O(1W)	91.9(7)	O(2W)-Cu(1)-O(3W)	92.9(7)

Table. S1. Selected bond distances (Å) and angles (°) for complexes 1–4.

O(1) -Cu(1)-O(1W)	92.5(7)	O(1)–Cu(1)–O(2W)	85.1(7)
O(1)-Cu(1)-O(3W)	174.7(7)	O(1)–Cu(1)–N(1)	85.2(7)
O(1)–Cu(1)–N(4)	88.0(6)		
	Com	plex 4	
Cu(1)–O(1)	1.986(9)	Cu(1)–N(4)#2	2.009(10)
Cu(1)–O(1W)	1.991(10)	Cu(1)–O(2)	2.364(9)
Cu(1)–N(1)	2.001(10)	Cu(1)–O(3)#2	2.425(8)
K(1)–O(13)	1.739(11)	Mo(1)–O(9)	1.694(9)
K(1)–O(4)	1.926(12)	Mo(1)–O(7)	1.707(9)
K(1)–O(8)	2.115(12)	Mo(1)-O(10)	1.935(8)
K(1)–O(12)	2.280(14)	Mo(1)–O(5)	1.949(8)
K(1)–O(9)	2.446(10)	Mo(1)–O(6)	2.246(8)
K(1)–O(6)	2.450(8)	Mo(1)-O(6)#1	2.322(8)
Mo(2)–O(16)	1.657(9)	Mo(3)–O(3)	1.695(8)
Mo(2)–O(12)	1.768(10)	Mo(3)–O(8)	1.723(10)
Mo(2)–O(11)	1.828(9)	Mo(3)–O(14)	1.827(9)
Mo(2)–O(5)	2.065(8)	Mo(3)–O(10)	2.097(9)
Mo(2)-O(10)#1	2.254(8)	Mo(3)-O(5)#1	2.295(8)
Mo(2)–O(6)	2.351(8)	Mo(3)–O(6)	2.306(8)
Mo(4)–O(1)	1.706(9)	Mo(4)–O(4)	1.769(11)
Mo(4)–O(11)	1.973(9)	Mo(4)–O(6)	2.348(8)
Mo(4)–O(14)	1.990(10)	Mo(4)–O(7)#1	2.378(10)
O(1)-Cu(1)-O(1W)	176.0(4)	O(2) -Cu(1)-O(3)#2	167.3(3)
O(1)-Cu(1)-N(1)	87.0(4)	O(9)-Mo(1)-O(7)	105.2(5)
O(1W)-Cu(1)-N(1)	91.3(4)	O(9)-Mo(1)-O(10)	99.9(4)
O(1)-Cu(1)-N(4)#2	91.4(4)	O(7)-Mo(1)-O(10)	98.1(4)
O(1W)-Cu(1)-N(4)#2	90.6(4)	O(9)-Mo(1)-O(5)	100.5(4)
N(1)-Cu(1)-N(4)#2	175.6(4)	O(7)-Mo(1)-O(5)	98.3(4)
O(1)–Cu(1)–O(2)	84.8(4)	O(10)-Mo(1)-O(5)	149.4(3)
O(1W)–Cu(1)–O(2)	91.6(4)	O(9)-Mo(1)-O(6)	92.7(4)
N(1)–Cu(1)–O(2)	90.7(4)	O(7)-Mo(1)-O(6)	162.1(4)
N(4)#2-Cu(1)-O(2)	93.2(4)	O(10)-Mo(1)-O(6)	78.2(3)
O(1)-Cu(1)-O(3)#2	83.0(3)	O(5)-Mo(1)-O(6)	78.2(3)
O(1W)-Cu(1)-O(3)#2	100.7(4)	O(9)-Mo(1)-O(6)#1	169.3(4)
N(1)-Cu(1)-O(3)#2	92.2(4)	O(7)-Mo(1)-O(6)#1	85.5(4)
N(4)#2-Cu(1)-O(3)#2	83.5(4)	O(10)-Mo(1)-O(6)#1	77.7(3)
O(11)–Mo(2)–O(6)	79.2(4)	O(5)-Mo(1)-O(6)#1	78.1(3)
O(5)–Mo(2)–O(6)	73.6(3)	O(6)-Mo(1)-O(6)#1	76.6(3)
O(10)#1-Mo(2)-O(6)	71.3(3)	O(13)–K(1)–O(4)	104.6(6)
O(3)–Mo(3)–O(8)	104.0(5)	O(13)–K(1)–O(8)	101.2(6)
O(3)-Mo(3)-O(14)	103.9(5)	O(4)–K(1)–O(8)	99.6(4)
O(8)-Mo(3)-O(14)	101.6(5)	O(13)–K(1)–O(12)	98.8(5)
O(3)-Mo(3)-O(10)	97.2(4)	O(4)–K(1)–O(12)	94.3(4)
O(8)-Mo(3)-O(10)	94.9(4)	O(8)–K(1)–O(12)	151.8(4)

O(13)-K(1)-O(9)	95.4(5)	O(4)–K(1)–O(9)	159.6(4)
O(8)–K(1)–O(9)	79.8(4)	O(12)–K(1)–O(9)	78.7(4)
O(13)-K(1)-O(6)	167.3(5)	O(4)–K(1)–O(6)	87.8(4)
O(8)–K(1)–O(6)	78.4(3)	O(12)–K(1)–O(6)	77.8(3)
O(9)-K(1)-O(6)	72.0(3)	O(11)–Mo(2)–O(5)	149.5(4)
O(14)-Mo(3)-O(10)	149.1(4)	O(16)–Mo(2)–O(12)	104.3(6)
O(3)-Mo(3)-O(5)#1	92.1(3)	O(16)-Mo(2)-O(11)	103.7(5)
O(8)-Mo(3)-O(5)#1	160.0(4)	O(12)-Mo(2)-O(11)	100.7(4)
O(14)-Mo(3)-O(5)#1	85.5(4)	O(16)–Mo(2)–O(5)	98.6(4)
O(10)-Mo(3)-O(5)#1	71.1(3)	O(12)-Mo(2)-O(5)	93.5(4)
O(3)-Mo(3)-O(6)	163.5(4)	O(12)-Mo(2)-O(6)	91.2(5)
O(8)-Mo(3)-O(6)	90.7(4)	O(16)-Mo(2)-O(10)#1	92.2(4)
O(14)-Mo(3)-O(6)	80.0(4)	O(12)-Mo(2)-O(10)#1	159.9(5)
O(10)-Mo(3)-O(6)	73.8(3)	O(11)-Mo(2)-O(10)#1	86.0(4)
O(5)#1-Mo(3)-O(6)	72.0(3)	O(5)-Mo(2)-O(10)#1	72.5(3)
O(1)-Mo(4)-O(4)	106.8(5)	O(16)–Mo(2)–O(6)	163.2(4)
O(1)-Mo(4)-O(11)	100.1(4)	O(6)-Mo(4)-O(7)#1	71.8(3)
O(4)–Mo(4)–O(11)	96.8(4)	O(1)-Mo(4)-O(7)#1	86.5(4)
O(1)-Mo(4)-O(14)	100.3(4)	O(4)-Mo(4)-O(7)#1	166.7(4)
O(4)–Mo(4)–O(14)	99.4(5)	O(11)-Mo(4)-O(7)#1	79.8(3)
O(11)-Mo(4)-O(14)	149.0(4)	O(14)-Mo(4)-O(7)#1	78.4(4)
O(1)-Mo(4)-O(6)	158.3(4)	O(11)-Mo(4)-O(7)#1	79.8(3)
O(4)-Mo(4)-O(6)	94.9(4)	O(14)-Mo(4)-O(6)	75.9(3)
O(11)-Mo(4)-O(6)	76.6(3)		
Symmetry code: #1 –x, y+1, –z	z/2; #2 x+1/2, -y+	1/2, z+1/2.	

 Table S2. Selected hydrogen–bonding geometry (Å, °) for complex 1

D–H•••A	D–H	Н•••А	D····A	D–H•••A
C(10)-H(10B)···O(13),	0.97	2.44	3.32	151

Table S3. Selected hydrogen-bonding geometry (Å, °) for complex 2						
D–H•••A	D–H	Н•••А	D····A	D–H•••A		
C(14)–H(14B)···O(11)	0.97	2.45	3.2294	137		

Table S4. Selected	hydrogen-	-bonding g	geometry ((Å, °) for com	plex 3
--------------------	-----------	------------	------------	-------	-----------	--------

D–H•••A	D–H	Н•••А	D•••A	D–H•••A
C(15)-H(15B)····O(23)	0.97	2.47	3.2465	137

Fig. S1 The EDS spectra of single crystal of 4.

Fig. S2 The $[Cu_2L_2]$ metal-organic loop in 1.

Fig. S3 The 2D layer in 1.

Fig. S4 The 3D supramolecular framework of 1.

Fig. S5 The 3D framework of 4.

Fig. S6 View of the scheme of complexes 1–4 showing the influence of the coordination modes of L ligand and polyoxoanions on the structures

Fig. S8 Powder X-ray diffraction patterns of the title complexes.

Fig. S9 The TGA curves of the title complexes.

Fig. S10 Cyclic voltammograms of 2–CPE in 0.01 M H_2SO_4 aqueous solution containing 0.0 – 12.0 mM $H_2O_2/KNO_2/KBrO_3$. Scan rate: 200 mV·s⁻¹.

Fig. S11 Cyclic voltammograms of 3–CPE in 0.01 M H_2SO_4 aqueous solution containing 0.0 – 12.0 mM $H_2O_2/KNO_2/KBrO_3$. Scan rate: 200 mV·s⁻¹

Fig. S12 Absorption spectra of the MB solution during the decomposition reaction under UV and visible irradiation without complex

Fig. S13 Photocatalytic decomposition rate of MB solution under UV (a), and visible (b) irradiation with the use of title complexes.

Fig. S14. Three times of MB degradation test under UV irradiation by the title complexes.