# **Supporting Information**

## Solvent-assisted Construction of Diverse Mg-TDC

# **Coordination Polymers**

Ying Song,<sup>†, ‡</sup> Mei-Ling Feng,<sup>†</sup> Zhao-Feng Wu<sup>†</sup> and Xiao-Ying Huang\*,<sup>†</sup>

<sup>†</sup>State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the

structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China

<sup>‡</sup>University of Chinese Academy of Sciences, Beijing, 100049, P.R. China

\*Corresponding author, E-mail: xyhuang@fjirsm.ac.cn. Fax: (+86) 591-83793727

| Number | Metal source                                         | Solvent                                | Temperature         | Results                 |
|--------|------------------------------------------------------|----------------------------------------|---------------------|-------------------------|
| 1      |                                                      |                                        |                     |                         |
| 1-1    | $Mg(NO_3)_2 \cdot 6H_2O^a$                           | 3mL EG <sup>c</sup> + 3mL acetonitrile | 150 °C <sup>b</sup> | 1                       |
| 1-2    | Mg(NO <sub>3</sub> ) <sub>2</sub> ·6H <sub>2</sub> O | 3mL EG + 3mL acetonitrile              | 160 °C              | 1                       |
| 1-3    | Mg(NO <sub>3</sub> ) <sub>2</sub> ·6H <sub>2</sub> O | 3mL EG                                 | 150 °C              | Solution                |
| 1-4    | Mg(NO <sub>3</sub> ) <sub>2</sub> ·6H <sub>2</sub> O | 3mL EG + 3mL acetone                   | 150 °C              | 1                       |
| 1-5    | Mg(NO <sub>3</sub> ) <sub>2</sub> ·6H <sub>2</sub> O | 3mL EG + 3mL methanol                  | 150 °C              | 1                       |
| 1-6    | Mg(NO <sub>3</sub> ) <sub>2</sub> ·6H <sub>2</sub> O | 3mL EG + 3mL ethanol                   | 160 °C              | 1                       |
| 1-7    | MgCl <sub>2</sub> ·6H <sub>2</sub> O                 | 3mL EG + 3mL acetonitrile              | 150 °C              | Unknown solids          |
| 1-8    | $MgCl_2 \cdot 6H_2O$                                 | 3mL EG + 3mL acetonitrile              | 160 °C              | 1                       |
| 2      |                                                      |                                        |                     |                         |
| 2-1    | Mg(NO <sub>3</sub> ) <sub>2</sub> ·6H <sub>2</sub> O | 4mL DMSO + 2mL methanol                | 120 °C              | Unknown                 |
|        |                                                      |                                        |                     | crystals                |
| 2-2    | Mg(NO <sub>3</sub> ) <sub>2</sub> ·6H <sub>2</sub> O | 4mL DMSO + 2mL methanol                | 140 °C              | 2                       |
| 2-3    | Mg(NO <sub>3</sub> ) <sub>2</sub> ·6H <sub>2</sub> O | 4mL DMSO + 2mL methanol                | 150 °C              | 2                       |
| 2-4    | Mg(NO <sub>3</sub> ) <sub>2</sub> ·6H <sub>2</sub> O | 4mL DMSO + 2mL methanol                | 160 °C              | Unknown                 |
|        |                                                      |                                        |                     | powders                 |
| 2-5    | Mg(NO <sub>3</sub> ) <sub>2</sub> ·6H <sub>2</sub> O | 4mL DMSO + 2mL methanol                | 170 °C              | MgSO <sub>4</sub>       |
| 2-6    | Mg(NO <sub>3</sub> ) <sub>2</sub> ·6H <sub>2</sub> O | 4mL DMSO                               | 150 °C              | 2                       |
| 2-7    | Mg(NO <sub>3</sub> ) <sub>2</sub> ·6H <sub>2</sub> O | 4mL DMSO + 2mL ethanol                 | 150 °C              | 2                       |
| 2-8    | $Mg(NO_3)_2 \cdot 6H_2O$                             | 4mL DMSO + 2mL acetonitrile            | 150 °C              | 2                       |
| 2-9    | Mg(NO <sub>3</sub> ) <sub>2</sub> ·6H <sub>2</sub> O | 4mL DMSO + 2mL DMF                     | 150 °C              | 2                       |
| 2-10   | $Mg(NO_3)_2 \cdot 6H_2O$                             | 4mL DMSO + 2mL benzene                 | 150 °C              | 2                       |
| 2-11   | $Mg(NO_3)_2 \cdot 6H_2O$                             | 4mL DMSO + 1mL DMF + 1mL               | 120 °C              | 2                       |
|        |                                                      | H <sub>2</sub> O                       |                     |                         |
| 3      |                                                      |                                        |                     |                         |
| 3-1    | Mg(NO <sub>3</sub> ) <sub>2</sub> ·6H <sub>2</sub> O | 4mL DMA                                | 120 °C              | 3                       |
| 3-2    | Mg(NO <sub>3</sub> ) <sub>2</sub> ·6H <sub>2</sub> O | 4mL DMA                                | 140 °C              | 3                       |
| 3-3    | Mg(NO <sub>3</sub> ) <sub>2</sub> ·6H <sub>2</sub> O | 4mL DMA                                | 150 °C              | 3                       |
| 3-4    | Mg(NO <sub>3</sub> ) <sub>2</sub> ·6H <sub>2</sub> O | 4mL DMA                                | 160 °C              | Unknown                 |
|        |                                                      |                                        |                     | crystals                |
| 3-5    | Mg(NO <sub>3</sub> ) <sub>2</sub> ·6H <sub>2</sub> O | $4mL DMA + 0.1 mL H_2O$                | 150 °C              | 3                       |
| 3-6    | Mg(NO <sub>3</sub> ) <sub>2</sub> ·6H <sub>2</sub> O | 4mL DMA + 0.1mL methanol               | 150 °C              | 3                       |
| 4      | -                                                    |                                        |                     |                         |
| 4-1    | $Mg(NO_3)_2 \cdot 6H_2O$                             | 5mL DMF + 1mL ethanol + 0.5mL          | 100 °C              | 4                       |
|        |                                                      | H <sub>2</sub> O                       |                     |                         |
| 4-2    | $Mg(NO_3)_2 \cdot 6H_2O$                             | 5mL DMF + 1mL ethanol + 0.5mL          | 120 °C              | Mg-formate <sup>d</sup> |
|        | C                                                    | H <sub>2</sub> O                       |                     | C                       |
| 4-3    | $Mg(NO_3)_2 \cdot 6H_2O$                             | 5mL DMF + 1mL ethanol + 0.5mL          | 130 °C              | Mg-formate              |
|        |                                                      | H <sub>2</sub> O                       |                     | C                       |

 Table S1. Temperature and solvent effects on the syntheses of compounds 1-4 under solventhermal conditions.

| A   |                                                      |                               |        |                |
|-----|------------------------------------------------------|-------------------------------|--------|----------------|
| 4-7 | $Mg(NO_3)_2 \cdot 6H_2O$                             | 5mL DMF + 1mL ethanol         | 100 °C | Unknown solids |
|     |                                                      | H <sub>2</sub> O              |        |                |
| 4-6 | $Mg(NO_3)_2 \cdot 6H_2O$                             | 5mL DMF + 1mL ethanol +0.1mL  | 100 °C | 4              |
|     |                                                      | H <sub>2</sub> O              |        |                |
| 4-5 | $Mg(NO_3)_2 \cdot 6H_2O$                             | 5mL DMF + 1mL ethanol + 0.5mL | 160 °C | Mg-formate     |
|     |                                                      | H <sub>2</sub> O              |        |                |
| 4-4 | Mg(NO <sub>3</sub> ) <sub>2</sub> ·6H <sub>2</sub> O | 5mL DMF + 1mL ethanol + 0.5mL | 140 °C | Mg-formate     |
|     |                                                      |                               |        |                |

Noting that:

[a] The reaction amount of  $Mg(NO_3)_2 \cdot 6H_2O$  was 1 mmol in 1, 2 and 4 while it was 0.39 mmol in 3 and that of  $H_2TDC$  was 1.5 mmol in 1, 2 and 4 while it was 0.39 mmol in 3.

[b] The reaction time was 3 days for 1, 2 and 3 while it was 3.5 days for 4; for obtaining crystals with large size, programmed cooling process was needed for 3 and 4.

[c]  $H_2TDC = 2$ , 5-thiophenedicarboxylic acid, EG = ethylene glycol, DMSO = dimethyl sulfoxide,

DMA = N, N'-dimethyl-acetamide, DMF = N, N'-dimethyl-formamide.

[d] Chemical formula, (Me<sub>2</sub>NH<sub>2</sub>)[Mg(HCOO)<sub>3</sub>]<sup>1</sup>.

#### **References:**

1 A. Rossin, A. Ienco, F. Costantino, T. Montini, B. Di Credico, M. Caporali, L.

Gonsalvi, P. Fornasiero and M. Peruzzini, Cryst. Growth Des., 2008, 8, 3302-3308.



Fig. S1 The TGA-MS characterizations of compound 3 verified the existence of DMA,  $[Me_2NH_2]^+$  and  $CH_3COO^-$  in the structure.

More structural figures.



Fig. S2 The  $[MgO_6]$  polyhedra in the structures of 1 (a), 2 (b), 3 (c) and 4 (d).



Fig. S3 The coordination environments of independent  $Mg^{2+}$  ions (a) and TDC<sup>2-</sup> ligands (b) in 1.



Fig. S4 The four independent EG molecules existing in the structure of 1.



**Fig. S5** The similar coordination modes of four independent  $Mg^{2+}$  ions (a) and four unique TDC<sup>2-</sup> ligands (b) in **2**.



**Fig. S6** (a) and (b) show the coordination modes of two unique  $Mg^{2+}$  centers and TDC<sup>2-</sup> ligand, respectively. (c) View of the layers formed by linking TDC<sup>2-</sup> ligands and [Mg-AC] chains along the *bc* and *ac* planes, respectively in **3**.



Fig. S7 The coordination environment of two unique  $Mg^{2+}$  centers (a) and TDC<sup>2-</sup> ligand (b) in 4.



Fig. S8 View of the simplified rhombic topology in 4.



With relatively large steric hindrance

**Fig. S9** View of a layer of **4** showing the difference of steric hindrance in both sides of a layer in **4**. Clearly, the side with two DMF and one H<sub>2</sub>O molecule coordinated to Mg2 has larger steric hindrance than the other side with one ethanol molecule binding to Mg1.



**Fig. S10** View of the packing diagram of **4** showing the "head to tail" packing favourable for the maximal filling of the void space. Solvent molecules are drawn in a space-filling mode. The free DMF molecules are omitted for clarity.



### CIE chromaticity diagram.

**Fig. S11** CIE chromaticity diagram of the emission colors of compounds **1-3** and H<sub>2</sub>TDC ligand.

### SHG characterization.



**Fig. S12** Oscilloscope traces of the SHG signals of **4** and KDP at the same particle size.





Fig. S13 FT-IR spectra of compounds 1-4.