Supporting Information

Peculiar Phenomena on Structural Transformation Triggered from A Nickel Coordination Polymer

Meng Kang, Guo-Ping Yang, Lei Hou, Wei-Ping Wu, Yun-Long Wu, Yao-Yu Wang*

Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China.

E-mail: wyaoyu@nwu.edu.cn.

Fig. S1 View of the color changes of the four nickel-based CPs via structural transformation.

Fig. S2 View of the transformations of 1 to 2 in various solvents: PXRD patterns of as-simulated 1 (1), the activation of 1 at 170 °C in methanol (2), ethanol (3), N,N'-dimethylformamide (4) and acetonitrile (5), and as-simulated 2 (6).

Fig. S3 View of the water-mediated transformation of 2 to 1 under the condition of adding bipy ligand: PXRD patterns of as-simulated 2 (1), the activation of 2 (a2) / 2&bipy (b2) at 145 °C in water, methanol (3), acetonitrile (4) and N,N'-dimethylformamide (5), and as-simulated 1 (6).

Fig. S4 View of the TGA plots of 2, 4 and H₂cbb & bipy (2:1) in nitrogen stream.

TGA of **2** exhibits a plateau of stability up to 380 °C due to no coordinated solvent, then followed by a sharp weight loss induced by the decomposition of the framework. TGA of **4** indicates a preliminary weight loss of 2.7% (calc. 3.1%) from room temperature to 150 °C, corresponding to the release of water molecules, and then followed by a flat plateau from 150 to 350 °C. After that, a sharp weight loss is observed caused by the decomposition of the framework.

Fig. S5 View of the reversible solid-state SCSC transformation of **1** and **3**. (a) PXRD patterns of as-simulated **1** (1), the activation of **1** at 50 °C (2), 120 °C (3) and 210 °C (4), and as-simulated **3** (5). (b) PXRD patterns of as-simulated **1** (1), the exposure of activated-samples at 50 °C (2), 120 °C (3) and 210 °C (4) in air for 5 minutes, and as-simulated **3** (5).

Fig. S6 The PXRD patterns of as-simulated 1 and the rehydrated sample after ten cycles of the reversible water uptake.

Fig. S7 PXRD patterns of as-simulated **4** (1), the activation of **4&cbb&bipy** at 170 $^{\circ}$ C in water (2), methanol (3), acetonitrile (4) and *N*,*N'*-dimethylformamide (5), as-simulated **3** (6) and as-simulated **1** (7).

Fig. S8 The PXRD patterns of 1(a), 2(b) and 4(c) simulated from the X-ray singlecrystal structures and as synthesized samples.

Fig. S9 View of the IR spectra of 1, 2 and 4.

Compound 1			
Ni(1) -N(1)	2.084(5)	O(4) ^{#3} -Ni(1)-N(1)	178.2(2)
Ni(1) -N(2)	2.098(5)	O(2W)-Ni(1)-N(1)	88.7(2)
Ni(1)-O(1)	2.043(5)	O(1)-Ni(1)-N(2)	90.9(2)
Ni(1)-O(4) ^{#3}	2.061(4)	O(4) ^{#3} -Ni(1)-N(2)	89.3(2)
Ni(1)-O(2W)	2.067(4)	O(2W)-Ni(1)-N(2)	173.6(2)
Ni(1)-O(1W)	2.131(5)	N(1)-Ni(1)-N(2)	89.29(16)
Ni(1) ^{#4} -O(4)	2.061(4)	O(1)-Ni(1)-O(1W)	173.8(3)
O(1)-Ni(1)-O(4) ^{#3}	89.7(2)	O(4) ^{#3} -Ni(1)-O(1W)	84.31(19)
O(1)-Ni(1)-O(2W)	80.95	O(2W)-Ni(1)-O(1W)	86.88(19)
O(4)#3-Ni(1)-O(2W)	66.33	N(1)-Ni(1)-O(1W)	96.7(2)
O(1)-Ni(1)-N(1)	89.2(2)	N(2)-Ni(1)-O(1W)	87.3(2)

Table S1. Selected Bond Lengths (Å) and Bond Angles (deg) for 1-4.

Symmetry transformations used to generate equivalent atoms: #1 x - 1/2, -y + 5/2, z - 1/2; #2 x + 1/2, -y + 5/2, z + 1/2; #3 x + 1, y, z; #4 x - 1, y, z.

Compound 2			
Ni(1) -N(1)	2.032(7)	O(1)-Ni(1)-O(5)#3	87.2(3)
Ni(1)-O(1)	2.003(6)	O(4) ^{#2} -Ni(1)-O(5) ^{#3}	165.8(2)
Ni(1)-O(4) ^{#2}	2.005(6)	O(1)-Ni(1)-O(2)#4	166.0(3)
Ni(1)-O(5)#3	2.005(6)	O(4)#2-Ni(1)-O(2)#4	87.4(3)
Ni(1)-O(2)#4	2.025(6)	O(5) ^{#3} -Ni(1)-O(2) ^{#4}	90.5(3)
Ni(1)#4-O(2)	2.025(6)	O(1)-Ni(1)-N(1)	99.6(3)
Ni(1) ^{#2} -O(4)	2.005(6)	O(4) ^{#2} -Ni(1)-N(1)	98.3(3)
Ni(1)#5-O(5)	2.005(6)	O(5) ^{#3} -Ni(1)-N(1)	95.9(3)
O(1)-Ni(1)-O(4) ^{#2}	91.5(3)	O(2)#4-Ni(1)-N(1)	94.4(3)

Symmetry transformations used to generate equivalent atoms: #1 -x + 1, -y + 2, -z + 2; #2 -x + 2, -y + 1, -z + 1; #3 x, y + 1, z; #4 -x + 2, -y + 2, -z + 1; #5 x, y - 1, z.

0			
Compound 3			
Ni(1) -N(1)	2.096(7)	O(5)#4-Ni(1)-O(1)	90.6(2)
Ni(1) -N(2)	2.047(7)	N(1)-Ni(1)-O(1)	96.3(3)
Ni(1)-O(5)#4	2.078(6)	N(2)-Ni(1)-O(2)	94.1(3)
Ni(1)-O(1)	2.141(5)	O(5)#4-Ni(1)-O(2)	89.2(2)
Ni(1)-O(2)	2.165(7)	N(1)-Ni(1)-O(2)	157.4(3)
Ni(1)-O(4)#4	2.201(6)	O(1)-Ni(1)-O(2)	61.0(2)
O(4)-Ni(1) ^{#1}	2.201(6)	N(2)-Ni(1)-O(4)#4	110.8(3)
O(5)-Ni(1) ^{#1}	2.078(6)	O(5)#4-Ni(1)-O(4)#4	61.4(2)
N(2)-Ni(1)-O(5)#4	171.5(3)	N(1)-Ni(1)-O(4)#4	112.1(3)
N(2)-Ni(1)-N(1)	89.6(3)	O(1)-Ni(1)-O(4)#4	139.0(2)

$O(5)^{#4}$ -Ni(1)-N(1)	90.4(3)	O(2)-Ni(1)-O(4) ^{#4}	87.4(3)
N(2)-Ni(1)-O(1)	97.8(3)		

Symmetry transformations used to generate equivalent atoms: #1 x - 1, y, z; #2 x + 1/2, -y + 5/2, z + 1/2; #3 x - 1/2, -y + 5/2, z - 1/2; #4 x + 1, y, z.

Compound 4			
Ni(1) ^{#1} -O(4)	1.997(3)	N(1)-Ni(1)-O(2)	159.45(12)
Ni(1)-O(4)#1	1.997(3)	N(2)#2-Ni(1)-O(2)	87.36(11)
Ni(1)-N(1)	2.077(3)	O(4)#1-Ni(1)-N(3)	87.35(12)
Ni(1)-N(2)#2	2.114(3)	N(1)-Ni(1)-N(3)	93.69(12)
Ni(1)-O(2)	2.117(3)	N(2)#2-Ni(1)-N(3)	173.74(12)
Ni(1)-N(3)	2.143(3)	O(2)-Ni(1)-N(3)	86.55(12)
Ni(1)-O(1)	2.179(3)	O(4) ^{#1} -Ni(1)-O(1)	157.07(12)
N(2)-Ni(1)#3	2.114(3)	N(1)-Ni(1)-O(1)	97.88(12)
O(4)#1-Ni(1)-N(1)	105.04(13)	N(2)#2-Ni(1)-O(1)	87.96(13)
O(4)#1-Ni(1)-N(2)#2	91.81(12)	O(2)-Ni(1)-O(1)	61.57(11)
N(1)-Ni(1)-N(2)#2	92.52(13)	N(3)-Ni(1)-O(1)	90.40(13)
O(4)#1-Ni(1)-O(2)	95.51(12)		

Symmetry transformations used to generate equivalent atoms: #1 - x + 2, y, -z + 3/2; #2 x + 1/2, -y + 1/2, z + 1/2; #3 x - 1/2, -y + 1/2, z - 1/2; #4 - x + 1, -y + 1, -z + 1.