Supplementary Information

Ion Diffusion Mechanism in Pn Na_xLi_{2-x}MnSiO₄

Peng Zhang, Yixu Xu, Feng Zheng, S.Q. Wu,* Yong Yang and Zi-Zhong Zhu*

We have performed the bader analysis^{S1-S3} of the charge population around A1 and A2 sites (see Fig.1) in Na_xLi_{2-x}MnSiO₄ (x = 2, 1, 0), as shown in Table S1. It is shown that compared with that in Li₂MnSiO₄, there are a little more charge accumulated around the A1 (or A2) site in Na₂MnSiO₄, indicating more covalent Na-O bonds than Li-O bonds. However, the atomic volume around the A1 (A2) site in Na₂MnSiO₄ is significantly larger (~ three times) than that in Li₂MnSiO₄, which is consistent with our bond length analysis and conclusions that Na₂MnSiO₄ can supply wider ionic diffusion channels than Li₂MnSiO₄.

Table S1. Calculated bader charge and atomic volume

	Li_2MnSiO_4		Na ₂ MnSiO ₄		NaLiMnSiO ₄	
-	A1	A2	A1	A2	A1	A2
Charge	0.138	0.146	0.186	0.196	0.139	0.194
Atomic Volume	3.364	3.215	9.275	8.904	3.359	8.660

Fig. S1 (a) Calculated formation energies of $\text{Li}_x \text{Na}_{2-x} \text{MnSiO}_4$ (0<*x*<2) structures. The stable configurations are given in (b) $\text{Na}_2 \text{MnSiO}_4$ (c) LiNaMnSiO_4 and (d) $\text{Li}_2 \text{MnSiO}_4$.

The calculated formation energies of several $Li_xNa_{2-x}MnSiO_4$ structures with different x values within one unit cell are shown in Fig. S1. It is shown that for NaLiMnSiO₄, only the structural with Li⁺ and Na⁺ ions respectively occupying the A1 and A2 sites is stable, with respect to the decomposition to Li_2MnSiO_4 and Na_2MnSiO_4 . Moreover, this stable configuration can well reproduce the experimental results reported by Duncan et al (ref. 16 in main paper). Thus the further calculations in this work are based on it.

References

- S1. G. Henkelman, A. Arnaldsson and H. Jónsson, *Computational Materials Science*, 2006, **36**, 354-360.
- S2. E. Sanville, S. D. Kenny, R. Smith and G. Henkelman, *J. Comput. Chem.*, 2007, 28, 899-908.
- S3. W. Tang, E. Sanville and G. Henkelman, J. Phys.: Condens. Matter, 2009, 21, 084204.