Solid Ternary Solutions of $H_2SO_4/HNO_3/H_2O$ in the Temperature

Range 180-211 K

Arnaud Aguzzi and Michel J. Rossi

Electronic Supplementary Information

Table E.1: Uptake coefficient of HNO_3 at $T = 180$ K.	
--	--

Ice (a)	Flow	Dose	Concentration	kesc	k _{uni}	$\gamma_{ m obs}$	$\gamma_{\rm corr}$ (b)
	$[molec. s^{-1}]$	[molec.]	$[molec. cm^{-3}]$	$[s^{-1}]$	$[s^{-1}]$		
			PV experiments				
В		$2.8\cdot10^{12}$	$1.4\cdot 10^9$	5.1	16.8	0.24	
В		$3.6\cdot10^{12}$	$1.8\cdot 10^9$	4.8	22.4	0.32	
В		$5.9\cdot10^{12}$	$3.0\cdot10^9$	5.1	18.9	0.27	
В		$1.0\cdot10^{13}$	$5.0\cdot 10^9$	5.2	18.9	0.27	
В		$1.1\cdot 10^{13}$	$5.5 \cdot 10^9$	4.9	15.4	0.22	
В		$1.6\cdot10^{13}$	$8.0\cdot10^9$	4.6	21.7	0.31	
В		$1.9\cdot 10^{13}$	$9.5 \cdot 10^9$	4.9	20.3	0.29	
В		$2.2\cdot 10^{13}$	$1.1\cdot 10^{10}$	4.3	19.6	0.28	
В		$3.5\cdot10^{13}$	$1.8\cdot 10^{10}$	4.3	19.6	0.28	
В		$4.5\cdot10^{13}$	$2.3\cdot 10^{10}$	4.2	18.2	0.26	
В		$1.0\cdot 10^{14}$	$5.0\cdot10^{10}$	4.0	20.3	0.29	
			SS experiments				
\mathbf{C}	$9.9\cdot 10^{12}$		$2.1\cdot 10^9$	2.4	14.0	0.20	0.27
В	$7.6 \cdot 10^{12}$		$2.7\cdot 10^9$	1.4	16.1	0.23	0.28
В	$1.5 \cdot 10^{13}$		$3.7\cdot 10^9$	2.0	18.9	0.27	0.32
С	$1.6\cdot 10^{13}$		$4.4\cdot 10^9$	1.8	16.8	0.24	0.29
В	$3.1\cdot 10^{13}$		$6.5\cdot 10^9$	2.4	20.3	0.29	0.31
В	$2.3\cdot 10^{13}$		$6.7\cdot 10^9$	1.7	16.1	0.23	-
В	$3.4\cdot 10^{13}$		$7.0\cdot 10^9$	2.4	20.3	0.29	-
В	$1.6\cdot 10^{14}$		$4.0\cdot10^{10}$	2.0	20.3	0.29	0.30
С	$1.7\cdot 10^{14}$		$4.4\cdot10^{10}$	2.0	18.9	0.27	0.31
${ m C}^{~(c)}$	$1.1\cdot 10^{14}$		$4.6\cdot10^{10}$	1.2	18.9	0.27	0.32
С	$5.0\cdot10^{15}$		$1.0\cdot10^{12}$	2.4	20.3	0.29	-
С	$5.1\cdot 10^{15}$		$1.1\cdot 10^{12}$	2.3	21.7	0.31	-

^(a) Symbols are explained in the text.

^(b) The corrected uptake coefficient has been obtained using equation (9).

 $^{\rm (c)}$ Experiments performed using the 8 mm aperture reactor.

Ice $^{(a)}$	Flow	Dose	Concentration	k_{esc}	k_{uni}	$\gamma_{ m obs}$	$\gamma_{ m corr}$ $^{ m (b)}$
	$[molec. s^{-1}]$	[molec.]	$[molec. cm^{-3}]$	$[s^{-1}]$	$[s^{-1}]$		
			PV experiments				
В		$3.1\cdot 10^{12}$	$1.6\cdot 10^9$	5.9	18.9	0.27	
В		$1.3\cdot 10^{13}$	$6.5\cdot 10^9$	5.5	17.5	0.25	
В		$1.6\cdot 10^{13}$	$8.0\cdot 10^9$	5.0	17.5	0.25	
			SS experiments				
В	$9.5\cdot 10^{12}$		$2.3\cdot 10^9$	2.1	18.9	0.27	-
В	$9.4 \cdot 10^{12}$		$2.6\cdot 10^9$	1.8	16.1	0.23	0.27
\mathbf{C}	$1.0\cdot10^{14}$		$3.1\cdot10^{10}$	1.6	18.2	0.26	0.30
В	$1.5\cdot 10^{14}$		$3.3\cdot10^{10}$	2.2	14.0	0.20	0.21
\mathbf{C}	$4.9\cdot10^{14}$		$1.1\cdot 10^{11}$	2.2	18.9	0.27	-
С	$5.3\cdot10^{15}$		$1.3\cdot 10^{12}$	2.1	16.8	0.25	-

Table E.2: Uptake coefficient of HNO_3 at T = 190 K.

(a) Symbols are explained in the text.
 (b) The corrected uptake coefficient has been obtained using equation (9).

Ice ^(a)	Flow	Dose	Concentration	$\mathbf{k}_{\mathbf{esc}}$	k_{uni}	$\gamma_{ m obs}$	$\gamma_{ m corr}$ $^{ m (b)}$
	$[molec. s^{-1}]$	[molec.]	$[molec. cm^{-3}]$	$[s^{-1}]$	$[s^{-1}]$		
			PV experiments				
В		$3.3\cdot 10^{12}$	$1.7\cdot 10^9$	5.5	11.9	0.17	
В		$6.2\cdot10^{12}$	$3.1\cdot 10^9$	4.4	13.3	0.19	
В		$8.6\cdot10^{12}$	$4.3\cdot 10^9$	5.6	11.9	0.17	
В		$1.3\cdot 10^{13}$	$6.5\cdot 10^9$	4.3	14.0	0.20	
В		$2.6\cdot10^{13}$	$1.3\cdot 10^{10}$	4.4	12.6	0.18	
В		$3.7\cdot10^{13}$	$1.9\cdot 10^{10}$	4.4	14.7	0.21	
В		$3.8\cdot10^{13}$	$1.9\cdot 10^{10}$	4.0	12.6	0.18	
В		$1.0\cdot 10^{14}$	$5.0\cdot10^{10}$	4.0	13.3	0.19	
			aa ·				
ъ	0.0 1012		SS experiments	<u>م</u> ۲	10 5	0.15	0.10
В	$8.0 \cdot 10^{12}$		$1.6 \cdot 10^{9}$	2.5	10.5	0.15	0.18
C	$1.1 \cdot 10^{13}$		$1.8 \cdot 10^{9}$	3.0	11.9	0.17	-
В	$8.8 \cdot 10^{12}$		$1.8 \cdot 10^{9}$	2.5	10.5	0.15	0.20
С	$2.0\cdot10^{13}$		$3.7\cdot 10^9$	2.7	10.5	0.15	0.16
В	$1.7\cdot 10^{13}$		$4.3\cdot 10^9$	2.0	12.6	0.18	0.23
В	$3.4\cdot10^{13}$		$1.1\cdot 10^{10}$	1.6	12.6	0.18	0.23
В	$3.0\cdot10^{13}$		$1.2\cdot 10^{10}$	1.3	9.8	0.14	0.15
С	$5.3\cdot10^{13}$		$1.2\cdot 10^{10}$	2.2	11.9	0.17	-
В	$3.8\cdot 10^{13}$		$1.4\cdot 10^{10}$	1.4	10.5	0.15	0.18
В	$1.2\cdot 10^{14}$		$2.3\cdot 10^{10}$	2.2	11.2	0.16	0.16
$\mathbf{B}^{(c)}$	$8.7\cdot10^{14}$		$3.4\cdot10^{10}$	1.3	11.9	0.17	-
С	$1.1\cdot 10^{14}$		$3.8\cdot10^{10}$	1.4	11.2	0.16	0.17
В	$1.9\cdot 10^{14}$		$4.3\cdot10^{10}$	2.2	14.0	0.20	-
$C^{(c)}$	$1.3\cdot 10^{15}$		$5.9\cdot10^{11}$	1.1	9.8	0.15	-
С	$3.9\cdot 10^{15}$		$9.3\cdot10^{11}$	2.1	11.2	0.16	-
С	$4.8\cdot10^{15}$		$1.2\cdot 10^{12}$	2.0	12.6	0.18	-
\mathbf{C}	$5.6\cdot10^{15}$		$1.8\cdot 10^{12}$	1.6	13.3	0.19	-
${ m C}^{~(c)}$	$8.3\cdot10^{15}$		$4.6\cdot10^{12}$	0.9	11.2	0.16	-

Table E.3: Uptake coefficient of HNO_3 at T = 200 K.

(a) Symbols are explained in the text.
 (b) The corrected uptake coefficient has been obtained using equation (9).
 (c) Experiments performed using the 8 mm aperture reactor.

Ice ^(a)	Flow	Dose	Concentration	kesc	k _{uni}	$\gamma_{ m obs}$	$\gamma_{ m corr}$ $^{ m (b)}$
	$[molec. s^{-1}]$	[molec.]	$[molec. cm^{-3}]$	$[s^{-1}]$	$[s^{-1}]$		
			PV experiments				
В		$4.7\cdot10^{12}$	$2.4\cdot 10^9$	5.6	5.6	0.08	
В		$1.0\cdot10^{13}$	$5.0\cdot 10^9$	5.7	5.6	0.08	
В		$2.9\cdot 10^{13}$	$1.5\cdot 10^{10}$	4.7	7.7	0.11	
В		$7.6\cdot 10^{13}$	$3.8\cdot10^{10}$	4.2	7.0	0.10	
			SS ovporiments				
	1.0		55 experiments				
В	$1.8 \cdot 10^{13}$		$3.6\cdot 10^9$	2.5	4.9	0.07	0.08
В	$2.5\cdot10^{13}$		$5.2\cdot 10^9$	2.4	3.5	0.05	0.06
В	$9.8\cdot10^{13}$		$2.0\cdot10^{10}$	2.4	4.8	0.07	-
(a) (d	1 1	1 . 1 . 1					

Table E.4: Uptake coefficient of HNO_3 at T = 210 K.

^(a) Symbols are explained in the text.
^(b) The corrected uptake coefficient has been obtained using equation (9).

Table E.5: Uptake coefficient of HNO_3 at T = 211 K.

Ice ^(a)	Flow [molec. s^{-1}]	Concentration [molec. cm^{-3}]	k_{esc} $[s^{-1}]$	k_{uni} $[s^{-1}]$	$\gamma_{ m obs}$	$\gamma_{ m corr}$ $^{ m (b)}$
В	$9.4\cdot10^{12}$	$3.6\cdot 10^9$	1.3	5.6	0.08	0.09
С	$1.5\cdot 10^{14}$	$2.9\cdot 10^{10}$	2.5	4.2	$0.06^{-(c)}$	-
\mathbf{C}	$2.1\cdot 10^{14}$	$4.4\cdot10^{10}$	2.4	3.5	$0.05^{-(c)}$	-

(a) Symbols are explained in the text.
 (b) The corrected uptake coefficient has been obtained using equation (9).
 (c) Partial saturation of the ice sample has been observed.

T [K]	γ	$C^{(a)}$	$h^{(b)}$	$HNO_3(cond)$	n	t ^(c)	$P(HNO_3)$	$P(H_2O)$
		[molecules]	[nm]	[molecules]		$[\mathbf{s}]$	[Torr]	[Torr]
180	0.29	$4.50\cdot10^{18}$	100	$9.01\cdot10^{17}$	$4.1^{(d)}$	160	$1.6 \cdot 10^{-6}$	$2.6 \cdot 10^{-6}$
180	0.29	$4.50\cdot10^{18}$	100	$1.21\cdot10^{18}$	$3.0^{ m (e)}$	560	$2.4 \cdot 10^{-6}$	$1.3 \cdot 10^{-6}$
180	0.31	$4.65\cdot10^{19}$	1100	$8.80\cdot10^{17}$	$4.5^{(f)}$	185	$1.6 \cdot 10^{-5}$	$8.7 \cdot 10^{-5}$
180	0.31	$4.65\cdot10^{19}$	1100	$1.34\cdot10^{18}$	$2.8^{(f)}$	530	$3.4 \cdot 10^{-5}$	$4.4 \cdot 10^{-5}$
190	0.25	$2.78\cdot10^{18}$	65	$6.31\cdot10^{17}$	1.2	145	$4.1 \cdot 10^{-5}$	$2.5 \cdot 10^{-6}$
190	0.27	$9.01\cdot10^{19}$	2120	$1.12\cdot 10^{18}$	1.1	2450	$3.3 \cdot 10^{-4}$	$4.5 \cdot 10^{-5}$
200	0.18	$1.19\cdot 10^{19}$	280	$4.39\cdot10^{17}$	1.8	120	$3.5 \cdot 10^{-5}$	$1.9 \cdot 10^{-6}$
$200^{\ (g)}$	0.16	$1.42\cdot10^{19}$	330	$1.64\cdot10^{18}$	1.2	230	$6.0 \cdot 10^{-5}$	$9.7\cdot10^{-6}$
$200^{\ (g)}$	0.15	$2.87\cdot10^{19}$	670	$5.85\cdot10^{17}$	0.9	495	$1.0 \cdot 10^{-5}$	$1.1 \cdot 10^{-5}$
200	0.16	$3.89\cdot10^{19}$	916	$1.47\cdot10^{18}$	1.1	401	$8.0 \cdot 10^{-5}$	$2.3\cdot10^{-5}$
200	0.19	$1.11\cdot 10^{20}$	2610	$4.01\cdot10^{18}$	1.1	740	$3.0 \cdot 10^{-5}$	$1.9\cdot 10^{-6}$

Table E.6: Mean composition of the $\rm HNO_3\cdot nH_2O$ condensed phase. Experiments performed on condensed ice samples.

^(a) Number of H_2O molecules condensed on the cold support.

^(b) Thickness of the condensed ice sample ($\rho = 0.92$ gr cm⁻³).

^(c) Time at which the phase transition has been

observed after the opening of the sample compartment.

^(d) Value measured at t = 220 s in Figure 5.a.

^(e) Value measured at t = 620 s in Figure 5.a.

^(f) Same type of experiment as displayed in Figure 5.a.

^(g) Experiments performed using the 8 mm aperture reactor.

Table E.7: (Quantity of H	NO ₃ in Ml	adsorbed	on the	condensed	ice sample,	mean
distance d o	f penetration	of HNO ₃ in	nto the bul	k and th	nickness h	of the conde	nsate.

-			
_ T [K]	Adsorbed HNO ₃ /ML	d (a) [nm]	h [nm]
180	16 (b) / 106 (c)	3.7 (b) / 8.6 (c)	102 (b) / 87 (c)
180	20/104	3.9/9.0	741/94
190	14/74	8.7/19.1	56/22
190	10/132	12.0/24.8	2052/28
200	15/52	15.6/39.8	219/35
200	35/193	22.4/54.0	252/45
200	16/69	44.1/78.4	346/85
200	24/173	33.3/70.3	257/50
200	35/472	41.3/97.0	1976/101

^(a) $d = \sqrt{Dt}$, where $D = 1.37 \cdot 10^{-2610/T}$ [Thibert, 1998].

 $^{(b)}$ Measured when H_2O partial pressure begins to decrease.

^(c) Measured at the phase transition.

Table E.8: Uptake coefficient of HNO₃ on solid ternary solutions of $H_2SO_4/HNO_3/H_2O.$

Т	H_2SO_4 (a)	HNO ₃ ^(a)	Flow	k _{esc}	$\gamma_{ m obs}$ (b)
[K]	[wt %]	[wt %]	$[molecule s^{-1}]$	$[s^{-1}]$	
185	1	20	$4.3\cdot 10^{14}$	1.6	0.11
185	1	20	$5.4\cdot10^{14}$	1.6	0.11
185	1	20	$7.7\cdot10^{14}$	1.4	0.12
190	5	40	$9.5\cdot10^{13}$	2.2	0.08
190	5	40	$2.3\cdot 10^{14}$	2.1	0.12
192	20	20	$5.4\cdot10^{14}$	1.9	0.12
192	20	20	$7.4\cdot10^{14}$	1.7	0.10
195	50	1	$3.4\cdot 10^{14}$	1.9	0.09
195	50	1	$6.0\cdot10^{14}$	2.1	0.08

(a) STS compositions from Carslaw *et al.* [1994]. (b) No correction has been applied on γ values due to large

 HNO_3 flow rates used in these experiments (see Part D for details).