Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is © The Royal Society of Chemistry 2003

Supplementary data to the manuscript "Infrared Absorption Spectra of 2-(Hydroxyimino)propanohydroxamic and Oxalodihydroxamic Acids Isolated in Argon Matrices" by A. Kaczor, J.Szczepanski, M. Vala, H. Kozłowski and L. Proniewicz

Geometry (Bond Lengths in Å, Angles in °) of the two most stable hpha structures.

Parameter	zEe-keto ^a	zEe-keto ^b	zEz-keto ^a
C ₁ -C ₂	1.501	1.493	1.506
C ₁ -C ₆	1.498	1.492	1.504
C ₁ -N ₇	1.285	1.296	1.286
C ₂ -N ₄	1.361	1.364	1.354
C ₂ -O ₃	1.234	1.240	1.239
C ₆ -H ₁₁	1.095	1.094	1.092
C ₆ -H ₁₂	1.090	1.089	1.095
C ₆ -H ₁₃	1.096	1.094	1.095
N ₄ -H ₉	1.013	1.016	1.011
N ₄ -O ₅	1.402	1.412	1.394
N ₇ -O ₈	1.392	1.400	1.407
O ₅ -H ₁₀	0.985	0.987	0.987
O ₈ -H ₁₄	0.971	0.975	0.970
O ₃ …H ₁₀	2.000	2.008	1.961
C ₁ -C ₂ -O ₃	122.9	122.9	122.8
C ₁ -C ₆ -H ₁₁	110.3	109.9	109.9
C ₁ -C ₆ -H ₁₂	109.8	109.7	110.4
C ₁ -C ₆ -H ₁₃	110.2	109.9	110.4
C ₁ -N ₇ -O ₈	111.9	110.7	114.3
C ₂ -N ₄ -H ₉	120.2	118.7	123.6
C ₂ -N ₄ -O ₅	115.8	114.9	116.2
C ₆ -C ₁ -N ₇	126.0	125.5	129.1
N ₄ -O ₅ -H ₁₀	100.8	100.6	100.6

Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is © The Royal Society of Chemistry 2003

N ₇ -O ₈ -H ₁₄	102.8	102.2	102.4
O ₃ -C ₂ -N ₄	120.6	121.1	119.7
O ₃ …H ₁₀ -O ₅	119.1	119.3	119.8
C ₁ -C ₂ -N ₄ -H ₉	-27.5	-31.5	-23.4
C ₁ -N ₇ -O ₈ -H ₁₄	-178.7	-178.7	179.0
C ₂ -C ₁ -C ₆ -H ₁₁	-125.8	-122.8	-179.0
C ₂ -C ₁ -C ₆ -H ₁₂	-4.5	-1.8	-57.8
C ₂ -C ₁ -C ₆ -H ₁₃	116.4	119.4	59.9
C ₂ -C ₁ -N ₇ -O ₈	179.5	179.1	-1.4
C ₂ -N ₄ -O ₅ -H ₁₀	-10.9	-13.8	-6.6
O ₃ -C ₂ -C ₁ -N ₇	-166.1	-160.4	-172.0
O ₃ -C ₂ -N ₄ -O ₅	15.5	18.1	9.7
C_2 - O_3 ···H_{10}- O_5	2.4	-179.0	1.5

^{*a*} B3LYP/6- 31G(d), ^{*b*} MP2/6-31G(d)

Geometry (Bond Lengths in Å, Angles in °) of the two most stable **oxha** structures.

Parameter	zEz-keto ^a	zEz-keto ^b	eEz-keto ^a
C ₂ -C ₃	1.515	1.508	1.522
C ₂ -N ₅	1.340	1.340	1.346
C ₃ -N ₉	1.340	1.340	1.330
C ₂ -O ₁	1.236	1.244	1.233
C ₃ -O ₄	1.236	1.244	1.249
N ₅ -H ₁₂	1.011	1.014	1.012
N9-H8	1.011	1.014	1.011
N ₅ -O ₆	1.388	1.396	1.397
N9-O10	1.388	1.396	1.383
O ₆ -H ₇	0.984	0.987	0.992
O ₁₀ -H ₁₁	0.984	0.987	0.984
$O_1 \cdots H_7$	2.088	2.087	3.684
$O_4 \cdots H_{11}$	2.088	2.087	2.093
C ₂ -C ₃ -N ₉	112.8	112.6	112.2

Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is © The Royal Society of Chemistry 2003

C ₃ -C ₂ -N ₅	112.8	112.6	115.3
C ₂ -C ₃ -O ₄	124.3	124.2	126.1
C ₃ -C ₂ -O ₁	124.3	124.2	120.7
C ₂ -N ₅ -H ₁₂	123.9	123.0	119.7
C ₃ -N ₉ -H ₈	123.9	123.0	124.0
C ₂ -N ₅ -O ₆	118.4	117.8	127.6
C ₃ -N ₉ -O ₁₀	118.4	117.8	119.8
N ₅ -C ₂ -O ₁	122.9	123.2	123.9
N ₉ -C ₃ -O ₄	122.9	123.2	121.7
N ₅ -O ₆ -H ₇	101.3	101.1	103.3
N ₉ -O ₁₀ -H ₁₁	101.3	101.1	101.7
O ₆ -N ₅ -H ₁₂	114.5	113.7	112.0
O ₁₀ -N ₉ -H ₈	114.5	113.7	115.9
O ₁ …H ₇ -O ₆	117.0	117.6	76.6
$O_4 \cdots H_{11} - O_{10}$	117.0	117.6	116.3
C ₂ -C ₃ -N ₉ -O ₁₀	173.0	171.4	177.9
C ₃ -C ₂ -N ₅ -O ₆	173.0	171.4	-7.4
C ₂ -N ₅ -O ₆ -H ₇	5.8	8.3	11.7
C ₃ -N ₉ -O ₁₀ -H ₁₁	5.8	8.3	1.4
O ₁ -C ₂ -C ₃ -O ₄	173.5	170.6	177.3
O ₁ -C ₂ -N ₅ -H ₁₂	-166.8	-163.0	4.4
O ₄ -C ₃ -N ₉ -H ₈	-166.8	-163.0	-176.0
C ₂ -O ₁ H ₇ -O ₆	179.3	179.6	177.7
$C_3-O_4\cdots H_{11}-O_{10}$	179.3	179.6	179.5

^a B3LYP/6- 31G(d), ^b MP2/6-31G(d)