The Interaction of $\mathbf{H}_{2} \mathbf{O}_{\mathbf{2}}$ with exchanged Titanium Oxide Systems (TS-1, $\mathbf{T i O}_{2}$, [Ti]-APO-5, Ti-ZSM-5)

${ }^{1}$ Karen L. Antcliff, ${ }^{1}$ Emyr Griffiths, ${ }^{1}$ Damien M. Murphy* and ${ }^{2}$ Elio Giamello ${ }^{l}$ Department of Chemistry, Cardiff University, PO Box 912, Cardiff CF10 3TB, UK. ${ }^{2}$ Dipartimento di Chimica IFM, Universita di Torino, Via P. Guria 9, 10125 Torino, Italy

SUPPLEMENTARY FIGURES

Calcined [Ti]-APO-5

Calcined TS-1

Figure 1; XRD patterns for the calcined [Ti]-APO-5 and TS-1 samples

Figure 2; EPR spectra of O_{2} - formed on thermally reduced TiO_{2} (rutile)

(a)

2000 2500 3000 3500

Magnetic Field (Gauss)

Figure 3; EPR spectra of CO reduced TS-1, after addition of O_{2}. The signal due to unreacted Ti^{3+} centres is visible at $\mathrm{g}=1.948$.

(b)

EPR spectra of TS-1 (a) reduced by CO and (b) formation of O_{2}^{-} upon addition of O_{2}

Figure 4; EPR spectra of $60 \mathrm{wt} \% \mathrm{H}_{2} \mathrm{O}_{2}$ treated [Ti]-APO-5 before evacuation of the sample.

Figure 5; EPR spectra of CO reduced [Ti]-APO-5 before addition of molecular oxygen.

Figure 6; EPR spectra of $60 \mathrm{wt} \% \mathrm{H}_{2} \mathrm{O}_{2}$ treated Ti-ZSM-5 after evacuation at 298 K for 1 hour.

