
Mathematical tools

In this appendix we will introduce the key mathematical tools to study the errors and the nu-
merical procedure of the splitting time method combined with the Lattice Boltzmann approach.
In particular we show that: i) the splitting procedure introduces an error proportional to ∆t2

if the di�usion coe�cients are equal. In other cases the error is only proportional to ∆t; ii) NS
and RD schemes have di�erent ∆t constraints; iii) How to write explicitly the matrices of the
numerical schemes, in presence of ligand excess.

(1)    Splitting errors: the RD scheme

Following [4], after having rewritten equations (4), (5), (6) and (7) in the compact form ∂u
∂t

=
TDu+TRu, where TD and TR are respectively the di�usion and the reaction operators, the error
between the exact solution ue and the splitted solution us is [4]:

‖ue − us‖ ≤
∆t

2
[TD, TR]ue(0) + O(∆t2) (57)

where ue(0) is the initial value of the exact solution (at t=0) and the square parenthesis indicates
the commutator operation ([A, B] = AB −BA). For instance, the commutator for a system in
excess of ligand, takes the following value:

[TD, TR] =
( 0 kd(DM −DML)∇2

k′
a(DM −DML)∇2 0

)
(58)

from which we can deduce that, if DM = DML, the splitting error is proportional to ∆t2 in
excess of ligand. If DM 6= DML, the splitting error is proportional to ∆t.

(2 )  A concrete example of excess of one ligand

The results shown in the previous sub-appendix, are based on the concrete form of each matrix
and of each vector of the problem. Let us consider the reaction-di�usion of the prototype
process (1) in the excess of ligand case, in the space domain Ω = [0, 1] discretized with nx

points. Boundary conditions at x=0, are i) perfect sink for M (cM(0, t) = 0), ii) electroinactivity
for ML, i.e. no �ux, ∂cML

∂x
= 0 and iii) at x=1 conditions are those of bulk both for M and

ML, cM(1, t) = c∗M and cML(1, t) = c∗ML. Therefore, we do not need the equations for L and M0,
since we are working in the excess of ligand case and under condition of perfect sink for M. Let
us introduce the vector un = (fn

1,M, fn
2,M, fn

1,ML, f
n
2,ML)

T , where fn
1,M = (fn

1,M,1, f
n
1,M,2, ..., f

n
1,M,nx

)T

and so on for fn
2,M, fn

1,ML and fn
2,ML. The numerical boundary conditions are the following:

fn
1,M,1 = −fn

2,M,1, fn
1,ML,1 = fn

2,ML,1, fn
2,M,nx

= c∗M − fn
1,M,nx

and fn
2,ML,nx

= c∗ML − fn
1,ML,nx

.

Electronic Supplementary Material for PCCP 
This journal is © The Owner Societies 



In general the numerical scheme will take the following form:


A11 A12 0 0
A21 A11 0 0
0 0 A33 A34

0 0 A43 A33




f1,M
f2,M
f1,ML
f2,ML


n+1

=


B11 B12 B13 B13

BT
12 BT

11 BT
13 BT

13
B31 B31 B33 B34

BT
31 BT

31 BT
34 BT

33




f1,M
f2,M
f1,ML
f2,ML


n

+


G1

G2

G3

G4

 (59)

The entries of each matrix are represented by sub-matrix Aij, which take di�erent forms de-
pending on the scheme considered. If the space is discretized with nx points then the dimension
of each sub-matrix is nx · nx.

(2.1)   Complete scheme: matrices A and B

A11 = [1]nx·nx A12 = diag(1, 0, ..., 0)nx·nx A33 = A11 A34 = −A12

A21 = diag(0, ..., 0, 1)nx·nx A43 = A21

B11 =


0 . . 0

1− ωM+ka∆t
2

0 . .
0 . 0 .
0 0 1− ωM+ka∆t

2
0


nx·nx

B12 =


0 . . 0

ωM−ka∆t
2

0 . .
0 . 0 .
0 0 ωM−ka∆t

2
0


nx·nx

B13 =


0 . . 0

kd∆t
2

0 . .
0 . 0 .

0 0 kd∆t
2

0


nx·nx

B31 =


0 . . 0

ka∆t
2

0 . .
0 . 0 .
0 0 ka∆t

2
0


nx·nx

B33 =


0 . . 0

1− ωML+kd∆t
2

0 . .
0 . 0 .

0 0 1− ωML+kd∆t
2

0


nx·nx

B34 =


0 . . 0

ωML−kd∆t
2

0 . .
0 . 0 .

0 0 ωML−kd∆t
2

0


nx·nx
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G1 =


c0
M
0
.
0


k+1

nx

G2 =


0
.
0
c∗M


k+1

nx

G3 =


0
.
.
0


k+1

nx

G4 =


0
.
0

c∗ML


k+1

nx

(2.2)       Di�usive scheme: matrices AD and BD

Keeping the same notations as for the complete scheme, the only sub-matrices that change are:

B13 = B31 = 0

B11 =


0 . . 0

1− ωM
2

0 . .
0 . 0 .
0 0 1− ωM

2
0


nx·nx

B12 =


0 . . 0

ωM
2

0 . .
0 . 0 .
0 0 ωM

2
0


nx·nx

B33 =


0 . . 0

1− ωML
2

0 . .
0 . 0 .
0 0 1− ωML

2
0


nx·nx

B34 =


0 . . 0

ωML
2

0 . .
0 . 0 .
0 0 ωML

2
0


nx·nx

(2.3)       Reactive scheme: matrices AR and BR

For the reactive scheme it is interesting to see the form of the matrices for the implicit scheme,
because we are going to use the splitting only for fast chemical processes not convergent with
the NS scheme. The new matrices take the following form:

AR = 1 +


A′

11 A′
12 A′

13 A′
13

A′
21 A′

22 A′
13 A′

13

A′
31 A′

31 A′
33 A′

34

A′
31 A′

31 A′
43 A′

44


A′

11 = ka∆t
2
· diag(0, 1, ..., 1)nx·nx A′

12 = diag(1, ka∆t
2

, ..., ka∆t
2

)nx·nx

A′
13 = −kd∆t

2
· diag(0, 1, ..., 1)nx·nx A′

21 = diag(ka∆t
2

, ..., ka∆t
2

, 1)nx·nx

A′
22 = ka∆t

2
· diag(1, ..., 1, 0)nx·nx A′

31 = −ka∆t
2
· diag(0, 1, ..., 1)nx·nx

A′
33 = diag(1, kd∆t

2
, ..., kd∆t

2
)nx·nx A′

34 = diag(−1, kd∆t
2

, ..., kd∆t
2

)nx·nx

A′
43 = diag(kd∆t

2
, ..., kd∆t

2
, 1)nx·nx A′

44 = kd∆t
2
· diag(1, ..., 1, 0)nx·nx

BR = diag(0, 1, ..., 1, 0, 0, 1, ..., 1, 0)16·n2
x
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(3)   Numerical errors

In general, the numerical scheme, whatever methods we have chosen, takes the following form:

Aun+1 = Bun + G (60)

where un is the vector of the density distribution functions, discretized in space and time, n is
the time step level tn = n∆t, G is a vector taking into account the boundary conditions and
possibly, the non linearity of the problem, A and B are operators depending on the boundary
conditions and speci�cally on the numerical method of integration. For instance, considering
the particular problem introduced in appendix A.2, for the NS scheme A and B take the form
de�ned in sub-appendix A.2.1, for the D process A = AD and B = BD (see sub-appendix A.2.2)
and for the R process A = AR and B = BR (see sub-appendix A.2.3).
When G does not contain any non linearity, the scheme (60) is convergent if the spectral radius
of iteration matrix A−1B is less than one [19]:

ρ(A−1B) < 1 (61)

for t ∈ [n∆t, (n + 1)∆t]. We will use inequality (61) to study the convergence conditions of the
di�erent schemes.
We consider only complexes for which K ′ > 1. The complete linear scheme, i.e. the case of
excess of ligand solved with the complete scheme (20) gives the following convergence condition:

∆t <
2

kac∗L
(62)

Indeed, the spectral radius of the iteration matrix is equal to the maximum value of all its
eigenvalues and one of the important properties is that ρ(A−1B) ≤ ‖A−1B‖. Then the proof
of condition (62) reduces to study the norm ‖A−1B‖. Considering the explicit form of the
matrices A and B given in sub-appendix A.2.1, we have ‖A‖ ≤ 2, so 1/‖A−1‖ ≤ ‖A‖ ≤ 2, and
‖B‖ ≤ k′

a∆t. Therefore, ‖A−1B‖ ≤ ‖A−1‖‖B‖ ≤ ‖A−1‖k′
a∆t and by applying the convergent

condition (61) we get inequality (62).
The application of the splitting time procedure to the same problem is possible numerically
for any values of ka, because inequality (61) is always satis�ed. So the complete scheme is
conditionally convergent while the split scheme is always convergent.
The convergence of the non linear scheme has to be investigated by applying the �xed point
theorem [19], also known as the Banach theorem. Roughly speaking, the theorem says that a
numerical scheme un+1 = Tun, where T is a (non linear) operator, is convergent to a unique
solution if T is a contraction, i.e.

∀u, v ∃0 ≤ L < 1 such that ‖Tu− Tv‖ ≤ L‖u− v‖ (63)
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By using the Banach theorem to the reactive part of the time split procedure solved with the
implicit Euler method, equation (35), we obtain that the numerical scheme is always convergent.
Indeed, the numerical reactive scheme takes the form un+1 = un + Fun+1, where F is a non
linear operator, and it can be put in the form un+1 = Tun, where T = F̄−1 and F̄ u = u− Fu.
Therefore, ‖Tu− Tv‖ ≤ ‖(1− F )−1‖‖u− v‖, and, because of ‖(1− F )−1‖ < 1 for each F , the
Banach theorem holds.
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