Electronic Supplementary Information

The electron transfer rate of large TPA based compounds: a joint theoretical and electrochemical approach

Alessandra Degli Esposti¹, Valeria Fattori, Cristiana Sabatini, Giuseppe Casalbore-Miceli, Giancarlo Marconi

Istituto per la Sintesi Organica e la Fotoreattività (ISOF), CNR, via P. Gobetti, 101, I-40129 Bologna (Italy)

Fig.S1: HOMO electron density contouring drawn using MOLDEN:G. Schaftenaar and J. H. Noordik, J. Comput.-Aided Mol. Design 14, 123 (2000).

Table S1-S5: Significant bond lengths, planar and dihedral angles of NBDB, TAPC, MT-DATA, MPTAB, and MDTAB calculated using:

Gaussian 03, Revision B.05,

- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
- M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven,
- K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi,
- V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega,
- G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota,
- R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,
- H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross,
- C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev,
- A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala,
- K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg,
- V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain,
- O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari,
- J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford,
- J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz,
- I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham,
- C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill,
- B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople,
- Gaussian, Inc., Pittsburgh PA, 2003.

¹Corresponding author *e-mail: alessandra.degliesposti@isof.cnr.it*

Figure S1: HOMO electron density contouring of NBDB, TAPC, MPTAB, MDTAB, and MTDATA.

Table S1: NBDB: bond length (Å), planar and dihedral angles (*degrees*) of the neutral (M) and cationic (\mathbf{M}^+) species referred to the labeling in the figure.

bond			planar angle			dihedral angle		
	\mathbf{M}	\mathbf{M}^+		\mathbf{M}	\mathbf{M}^+		\mathbf{M}	\mathbf{M}^+
NC_1^A	1.420	1.392	$C_6^A C_1^A C_2^A$	118.4	118.0	$C_1^A C_1^B C_1^C N$	-0.3	0.1
$C_1^A C_2^A$	1.404	1.416	$C_1^A C_2^A C_3^A$	120.6	120.6	$C_2^A C_1^A N C_1^B$	-41.3	-28.1
$C_2^A C_3^A$	1.390	1.380	$C_2^A C_3^A C_4^A$	121.6	122.0	$C_2^B C_1^B N C_1^C$	-42.5	-47.9
$C_3^A C_4^A$	1.406	1.417	$C_3^A C_4^A C_5^A$	117.2	116.6	$C_{3}^{A}C_{4}^{A}C_{4'}C_{3'}$	34.8	22.1
$C_4^A C_{4'}$	1.481	1.459				$C_{3}^{C}C_{4}^{C}C_{7}C_{8}$	36.6	34.6
NC_1^B	1.423	1.431	$C_{6}^{B}C_{1}^{B}C_{2}^{B}$	119.0	120.1			
$C_1^B \overline{C}_2^B$	1.404	1.402	$C_1^B C_2^B C_3^B$	120.3	119.7			
$C_2^{\overline{B}}C_3^{\overline{B}}$	1.394	1.393	$C_2^B C_3^B C_4^B$	120.6	120.4			
$C_3^{\overline{B}}C_4^{\overline{B}}$	1.397	1.397	$C_3^{\overline{B}}C_4^{\overline{B}}C_5^{\overline{B}}$	119.3	119.8			
NC_1^C	1.419	1.424	$C_{6}^{C}C_{1}^{C}C_{2}^{C}$	118.3	119.0			
$C_1^C \overline{C}_2^C$	1.405	1.405	$C_1^{\overline{C}}C_2^{\overline{C}}C_3^{\overline{C}}$	120.6	120.1			
$C_2^{\overline{C}}C_3^{\overline{C}}$	1.390	1.389	$C_2^{\overline{C}}C_3^{\overline{C}}C_4^{\overline{C}}$	121.6	121.5			
$C_3^{\overline{C}}C_4^{\overline{C}}$	1.406	1.408	$C_3^{\overline{C}}C_4^{\overline{C}}C_5^{\overline{C}}$	117.2	117.5			
$C_4^C C_7$	1.483	1.480	$C_{12}C_{7}C_{8}$	118.0	118.3			
C_7C_8	1.406	1.406	$C_{7}C_{8}C_{9}$	121.0	120.8			
C_8C_9	1.394	1.393	$C_8 C_9 C_{10}$	120.3	120.2			
$C_{9}C_{10}$	1.396	1.396	$C_8 C_9 C_{11}$	119.4	119.6			

Table S2: TAPC: bond length (Å), planar and dihedral angles (*degrees*) of the neutral (M) and cationic (\mathbf{M}^+) species referred to the labeling in the figure.

bond			planar angle			dihedral angle		
	\mathbf{M}	\mathbf{M}^+		\mathbf{M}	\mathbf{M}^+		\mathbf{M}	\mathbf{M}^+
NC_1^A	1.420	1.406	$C_6^A C_1^A C_2^A$	118.0	118.3	$C_1^A C_1^B C_1^C N$	0.0	0.1
$C_1^A C_2^A$	1.400	1.411	$C_1^A C_2^A C_3^A$	120.7	120.3	$C_2^A C_1^A N C_1^B$	41.4	32.4
$C_2^A C_3^A$	1.395	1.384	$C_2^A C_3^A C_4^A$	122.1	122.1	$C_6^A C_1^A N C_1^C$	41.9	32.6
$C_3^A C_4^A$	1.402	1.411	$C_3^A C_4^A C_5^A$	116.4	116.9	$C_2^B C_1^B N C_1^C$	41.8	41.7
$C_4^A C_5^A$	1.406	1.406	$C_4^A C_5^A C_6^A$	122.2	121.8			
$C_5^A C_6^A$	1.390	1.390	$C_5^A C_6^A C_1^A$	120.6	120.5			
$C_6^A C_1^A$	1.404	1.408						
$C_4^A C_8$	1.546	1.542						
$NC_1^{B,C}$	1.422	1.422	$C_{6}^{B,C}C_{1}^{B,C}C_{2}^{B,C}$	118.4	119.2			
$C_{1}^{B,C}C_{2}^{B,C}$	1.404	1.405	$C_{1}^{B,C}C_{2}^{B,C}C_{3}^{B,C}$	120.5	120.0			
$C_{2}^{B,C}C_{3}^{B,C}$	1.393	1.390	$C_{2}^{B,C}C_{3}^{B,C}C_{4}^{B,C}$	121.6	121.5			
$\tilde{C_3^{B,C}C_4^{B,C}}$	1.401	1.404	$C_{3}^{B,C}C_{4}^{B,C}C_{5}^{B,C}$	117.5	117.8			
$C_4^{B,C} C_7^{B,C}$	1.511	1.508	0 4 0					

Table S3: MTDATA: bond length (Å), planar and dihedral angles (*degrees*) of the neutral (**M**) and cationic (**M**⁺) species referred to the labeling in the figure.

bond			planar angle			dihedral angle		
	\mathbf{M}	\mathbf{M}^+		\mathbf{M}	\mathbf{M}^+		\mathbf{M}	\mathbf{M}^+
NC_1^A	1.421	1.410	$C_6^A C_1^A C_2^A$	118.3	118.4	$C_1^A C_1^D C_1^E N$	-0.1	0.0
$C_1^A C_2^A$	1.404	1.409	$C_1^A C_2^A C_3^A$	120.8	120.9	$C_1^A C_1^B C_1^C N'$	0.2	0.0
$C_2^A C_3^A$	1.390	1.382	$C_2^A C_3^A C_4^A$	120.9	121.0	$C_2^A C_1^A N C_1^D$	41.9	39.1
$C_3^A C_4^A$	1.404	1.416	$C_3^A C_4^A C_5^A$	118.3	117.8	$C_3^A C_4^A N' C_1^B$	-43.9	-25.0
$C_4^A N'$	1.422	1.392				$C_3^B C_1^B N' C_1^C$	-41.6	-50.4
						$C_3^C C_1^C N' C_1^A$	-39.4	-51.1
$C_4^{B,C}N'$	1.421	1.433	$C_6^{B,C} C_1^{B,C} C_2^{B,C}$	119.2	119.9			
$C_1^{B,C}C_2^{B,C}$	1.405	1.402	$C_1^{B,C}C_2^{B,C}C_3^{B,C}$	120.6	120.3			
$C_2^{B,C}C_3^{B,C}$	1.393	1.394	$C_2^{B,C}C_3^{B,C}C_4^{B,C}$	120.3	119.9			
$C_3^{B,C}C_4^{B,C}$	1.396	1.397	$C_{3}^{B,C}C_{4}^{B,C}C_{5}^{B,C}$	118.9	119.8			
$C_5^B C_7^B$	1.512	1.511						
· ·								

MPTAB

Table S4: MPTAB: bond length (Å), planar and dihedral angles (*degrees*) of the neutral (M) and cationic (\mathbf{M}^+) species referred to the labeling in the figure.

bond			planar angle			dihedral angle		
	\mathbf{M}	\mathbf{M}^+		\mathbf{M}	\mathbf{M}^+	Ū.	\mathbf{M}	\mathbf{M}^+
NC_1^A	1.421	1.400	$C_6^A C_1^A C_2^A$	118.3	118.1	$C_1^A C_1^B C_1^C N$	0.2	-0.3
$C_1^A C_2^A$	1.405	1.414	$C_1^A C_2^A C_3^A$	120.8	121.0	$C_1^C C_1^D C_1^E N'$	0.3	-0.8
$C_2^A C_3^A$	1.391	1.381	$C_2^A C_3^A C_4^A$	120.8	121.0	$C_2^A C_1^A N C_1^B$	43.3	31.9
$C_3^A C_4^A$	1.404	1.414	$C_3^A C_4^A C_5^A$	118.3	118.1	$C_2^B C_1^B N C_1^C$	39.7	48.7
						$C_2^C C_1^C N C_1^A$	42.4	39.8
$C_1^B N$	1.420	1.432	$C_6^B C_1^B C_2^B$	118.8	119.8	$C_3^C C_4^C N' C_1^E$	-44.4	-26.3
$C_1^B C_2^B$	1.405	1.402	$C_1^B C_2^B C_3^B$	120.4	119.8	$C_3^D C_4^D N' C_1^C$	-41.1	-49.0
$C_{2}^{B}C_{3}^{B}$	1.393	1.393	$C_2^B C_3^B C_4^B$	120.7	120.4	$C_3^E C_4^E N' C_1^D$	-39.4	-48.1
$C_3^B C_4^B$	1.396	1.397	$C_3^B C_4^B C_5^B$	119.1	119.8			
-								
$C_1^C N$	1.422	1.415	$C_{6}^{C}C_{1}^{C}C_{2}^{C}$	118.3	118.4			
$C_{1}^{C}C_{2}^{C}$	1.404	1.408	$C_1^C C_2^C C_3^C$	120.8	120.9			
$C_{2}^{C}C_{3}^{C}$	1.391	1.384	$C_2^C C_3^C C_4^C$	120.8	121.0			
$C_3^{\overline{C}}C_4^{\overline{C}}$	1.404	1.414	$C_{3}^{C}C_{4}^{C}C_{5}^{C}$	118.3	117.9			
$C_4^C N'$	1.421	1.396	0 1 0					
-								
$C_4^D N'$	1.422	1.431	$C_{6}^{D}C_{1}^{D}C_{2}^{D}$	120.2	120.7			
$C_{1}^{D}C_{2}^{D}$	1.400	1.397	$C_{1}^{D}C_{2}^{D}C_{3}^{D}$	118.8	118.4			
$C_2^{\overline{D}}C_3^{\overline{D}}$	1.400	1.394	$C_2^{\overline{D}} C_3^{\overline{D}} C_4^{\overline{D}}$	121.4	121.0			
$\tilde{C_3^D} \tilde{C_4^D}$	1.402	1.402	$\tilde{C_{3}^{D}C_{4}^{D}C_{5}^{D}}$	119.0	119.9			
$C_2^D C_7^D$	1.512	1.511	0 1 0					
$C_4^E N'$	1.420	1.430	$C_{6}^{E}C_{1}^{E}C_{2}^{E}$	119.1	119.6			
$C_1^E C_2^E$	1.396	1.397	$C_{1}^{E}C_{2}^{E}C_{3}^{E}$	120.6	120.4			
$C_2^{\overline{E}}C_3^{\overline{E}}$	1.393	1.394	$C_2^{\overline{E}}C_3^{\overline{E}}C_4^{\overline{E}}$	120.3	120.0			
$\tilde{C_3^E} \tilde{C_4^E}$	1.405	1.402	$C_{3}^{E}C_{4}^{E}C_{5}^{E}$	118.9	119.7			
<u> </u>			· · · ·					

MDTAB

Table S5: MDTAB: bond length (Å), planar and dihedral angles (*degrees*) of the neutral (**M**) and cationic (**M**⁺) species referred to the labeling in the figure.

bond			planar angle			dihedral angle		
	\mathbf{M}	\mathbf{M}^+		\mathbf{M}	\mathbf{M}^+		\mathbf{M}	\mathbf{M}^+
NC_1^A	1.419	1.406	$C_6^A C_1^A C_2^A$	118.3	118.2	$C_1^A C_1^B C_1^C N$	-0.2	0.0
$C_1^A C_2^A$	1.405	1.411	$C_1^A C_2^A C_3^A$	120.6	120.6	$C_1^B C_1^D C_1^E N'$	0.6	0.0
$C_2^A C_3^A$	1.390	1.385	$C_2^A C_3^A C_4^A$	121.7	121.8	$C_2^A C_1^A N C_1^B$	39.6	33.4
$C_3^A C_4^A$	1.406	1.412	$C_3^A C_4^A C_5^A$	117.1	116.9	$C_2^B C_1^B N C_1^C$	43.2	38.0
$C_4^A C_{4'}$	1.480	1.468				$C_2^C C_1^C N C_1^A$	41.6	49.2
						$C_3^B C_4^B N' C_1^E$	-43.7	-29.2
$C_1^B N$	1.422	1.413	$C_6^B C_1^B C_2^B$	118.4	118.3	$C_3^D C_4^D N' C_1^B$	-42.1	-47.5
$C_1^B C_2^B$	1.404	1.409	$C_{1}^{B}C_{2}^{B}C_{3}^{B}$	120.8	120.9	$C_3^E C_4^E N' C_1^D$	-40.5	-47.0
$C_{2}^{B}C_{3}^{B}$	1.390	1.384	$C_{2}^{B}C_{3}^{B}C_{4}^{B}$	120.8	120.9	$C_{3}^{A}C_{4}^{A}C_{3'}C_{4'}$	-33.9	-29.4
$C_3^B C_4^B$	1.404	1.413	$C_3^B C_4^B C_5^B$	118.4	118.0			
$C_4^B N'$	1.422	1.399						
~			~ ~ ~					
$C_1^C N$	1.421	1.430	$C_{6}^{C}C_{1}^{C}C_{2}^{C}$	119.2	119.8			
$C_1^C C_2^C$	1.405	1.402	$C_{1}^{C}C_{2}^{C}C_{3}^{C}$	120.6	119.8			
$C_2^C C_3^C$	1.393	1.393	$C_2^C C_3^C C_4^C$	120.3	120.4			
$C_{3}^{C}C_{4}^{C}$	1.397	1.397	$C_3^{\rm C} C_4^{\rm C} C_5^{\rm C}$	118.9	119.7			
(D) NI	1 400	1 400	ananan	100.0	100 -			
$C_4^D N'$	1.422	1.428	$C_6^D C_1^D C_2^D$	120.3	120.7			
$C_1^D C_2^D$	1.397	1.397	$C_1^D C_2^D C_3^D$	118.7	118.5			
$C_2^D C_3^D$	1.391	1.393	$C_2^D C_3^D C_4^D$	121.3	121.0			
$C_3^D C_4^D$	1.405	1.397	$C_{3}^{D}C_{4}^{D}C_{5}^{D}$	119.0	119.8			
$C_{6}^{2}C_{7}^{2}$	1.512	1.511						
$C^E N'$	1 490	1 490	$C^E C^E C^E$	110 1	110 G			
$C_4 N$ $C^E C^E$	1.420 1.306	1.429 1.307	$C_6 C_1 C_2$ $C^E C^E C^E$	119.1 190 6	119.0 190 /			
$C_1 C_2$ $C^E C^E$	1.390	1 202	$C_1 C_2 C_3$ $C^E C^E C^E$	120.0 190.2	120.4			
$C_2 C_3 C_3 C_E C^E C^E$	1.090	1 409	$C_2 C_3 C_4$ $C^E C^E C^E$	120.3 110 0	119.9 110 G			
$\cup_3 \cup_4$	1.400	1.402	$C_3 C_4 C_5$	110.0	119.0			
						1		