

Stepwise Interfacial Self-Assembly of Nanoparticles via Specific DNA Pairing

Bo Wang,^{a,b} Miao Wang,^c Hao Zhang,^b Nelli S. Sobal,^d Weijun Tong,^a Changyou Gao, ^{a,*} Yanguang Wang,^c Michael Giersig,^d Dayang Wang,^{b,*} and Helmuth Möhwald^b

- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China. E-mail: cygao@mail.hz.zj.cn and Fax: 86 571 87951948.
- Max Planck Institute of Colloids and Interfaces, D-14424, Potsdam, Germany.Email: dayang.wang@mpikg-golm.mpg.de and Fax: 49 331 5679202.
- ^c Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
- d Center of Advanced European Studies and Research, D-53175, Bonn, Germany.

Figure S1. TEM image of a Ag/Au NP bilayer, obtained by sonicating them for 1 h after transferred from the water/toluene interface. The black large dots are 12 nm Au NPs while the grey small dots 6 nm Ag NPs. The sonication caused detachment of the Au NPs rather than Ag NPs, suggesting a bilayer character of the resulting films.

Figure S2. Photographs of water droplets of 20 μ L and 200 μ L in volume, standing on a Ag/Au NP bilayer (a) and a Ag/Au/CdTe NP trilayer (b), self-assembled at the water/toluene interface. The upper phase is toluene and the lower phase water. The interface is highlighted by arrows.