Accurate structures from combined gas electron diffraction and liquid crystal NMR data; the importance of anisotropy of indirect couplings for 1,4-difluorobenzene

Ewan M. Brown, Philip D. McCaffrey, Derek A. Wann and David W. H. Rankin*

Electronic supplementary information

Table S1 Nozzle-to-plate distances, weighting functions, scale factors, correlation parameters and electron wavelengths used in the joint electron-diffraction and LCNMR study of 1,4-difluorobenzene.

Nozzle-to-camera distance / mm	285.96	128.22
$\Delta s / nm^{-1}$	2	4
s_{\min} / nm^{-1}	20	60
s_{w1} / nm^{-1}	40	80
s_{w2} / nm^{-1}	124	308
$s_{\rm max}$ / nm ⁻¹	144	320
Correlation parameter, q	0.476	0.140
Scale factor	0.725(3)	0.724(8)
Wavelength / pm	5.749	5.749

Constant	Observed	Corrected	Calculated	Uncertainty	Difference
ZLI 1167					
$D_{1.8}$	87.48	89.61	89.46	0.22	0.15
$D_{2.8}$	766.30	827.17	826.10	6.20	1.07
$D_{7.8}$	228.58	231.26	231.48	0.27	-0.22
D_{19}	31.81	32.10	31.96	0.10	0.14
$D_{29}^{1,9}$	132.81	135.82	135.76	0.30	0.06
$D_{8,9}^{2,9}$	363.61	369.14	369.46	0.55	-0.32
$D_{9,10}$	54 73	54 99	54 98	0.10	0.01
$D_{2,10}$	17 75	17.84	17.61	0.20	0.23
$D_{2,11}$	33.47	33.65	33.60	0.10	0.05
$D_{0,11}$	22.40	22.57	22.70	0.20	-0.13
$D_{2,12}$ $D_{2,12}$	44 21	44 56	44 55	0.10	0.01
$D_{8,12}$ $D_{7,10}$	33.87	33.85	33.78	0.10	0.07
$D_{1,10}$	21 31	21.26	20.99	0.10	0.27
$D_{1,10}$	554.68	566.01	566.28	1 30	0.27
$D_{1,7}$	27.45	27.45	27.28	0.10	-0.27
$D_{2,10}$	05 35	27.43	06.03	0.10	0.17
$D_{2,7}$	95.55	95.90	90.03	0.10	-0.13
ZLI 1152 (П)	105 72	100.29	100.01	0.60	0.27
$D_{1,8}$	-163.73	-190.38	-190.01	12.00	-0.37
$D_{2,8}$	-1089.33	-1820.80	-1822.72	13.80	-4.08
D _{7,8}	-506.69	-512.75	-313.37	0.60	0.62
$D_{1,9}$	-/2.38	-/3.05	-/2.81	0.30	-0.24
$D_{2,9}$	-307.00	-313.96	-314.14	0.80	0.18
$D_{8,9}$	-850.37	-863.06	-864.16	1.30	1.10
$D_{8,10}$	-126.26	-126.86	-126.85	0.10	-0.01
$D_{2,11}$	-38.47	-38.67	-38.77	0.30	0.10
$D_{8,11}$	-73.71	-74.11	-74.01	0.10	-0.10
$D_{2,12}$	-47.98	-48.36	-48.42	0.36	0.06
$D_{8,12}$	-93.80	-94.57	-94.59	0.10	0.02
$D_{7,10}$	-79.14	-79.09	-79.02	0.10	-0.07
ZLI 1695 ('H)					
$D_{1,8}$	115.33	118.09	118.10	0.37	-0.01
$D_{2,8}$	987.32	1066.68	1063.07	7.90	3.61
$D_{7,8}$	293.16	296.54	296.82	0.34	-0.28
$D_{1,9}$	40.15	40.52	40.20	0.20	0.32
$D_{2,9}$	165.06	168.80	168.80	0.40	0.00
$D_{8,9}$	448.28	455.19	455.64	0.68	-0.45
$D_{8,10}$	68.22	68.55	68.50	0.10	0.05
$D_{2,11}$	22.65	22.76	22.69	0.28	0.07
$D_{8,11}$	43.12	43.35	43.28	0.10	0.07
$D_{2,12}$	29.84	30.07	29.89	0.28	0.18
$D_{8,12}$	58.37	58.83	58.84	0.10	-0.01
$D_{7,10}$	41.72	41.69	41.67	0.10	0.03
Mixture					
$D_{1,8}$	-114.31	-118.32	-118.16	0.50	-0.16
$D_{2,8}$	-1573.47	-1708.79	-1705.37	13.60	-3.42
$D_{7,8}$	-493.35	-500.35	-501.61	0.70	1.26
$D_{1,9}$	-86.20	-87.02	-86.68	0.40	-0.34
$D_{2,9}$	-403.21	-412.35	-411.88	1.00	-0.47
$D_{8,9}$	-1190.30	-1206.21	-1204.36	1.60	-1.85
$D_{8,10}$	-162.94	-163.72	-163.57	0.10	-0.15
$D_{2,11}$	-35.36	-35.55	-35.64	0.60	0.09

Table S2 Dipolar coupling constants / Hz. See text for a more detailed description of the values.

$D_{8,11}$	-67.91	-68.29	-68.31	0.10	0.02	
$D_{2.12}$	-31.67	-31.96	-31.80	0.60	-0.16	
$D_{8.12}$	-57.89	-58.51	-58.47	0.10	-0.04	
$D_{7.10}$	-110.13	-110.06	-110.13	0.10	0.07	
$D_{1.10}$	-65.36	-66.55	-68.41	0.35	1.86	
$D_{1.7}$	-1777.12	-1848.74	-1845.94	5.00	-2.81	
$D_{2.10}$	-84.59	-84.59	-85.21	0.20	-0.62	
D_{27}	-272.98	-280.02	-279.95	0.30	-0.07	
ZLI 1132 (¹⁹ F)						
D _{7.8}	-450.81	-456.20	-456.13	0.60	-0.07	
$D_{8.9}$	-762.53	-773.91	-774.86	1.20	0.94	
$D_{8.10}$	-112.90	-113.44	-113.48	0.10	0.04	
$D_{8.11}$	-65.31	-65.67	-65.68	0.13	0.01	
$D_{8,12}$	-82.64	-83.32	-83.38	0.22	0.06	
$D_{7,10}$	-70.87	-70.83	-70.85	0.10	0.02	
$D_{1,10}$	-44.06	-44.10	-44.01	0.27	-0.09	
$D_{1,7}$	-1160.49	-1187.89	-1187.63	2.80	-0.26	
$D_{2.10}$	-57.17	-57.35	-56.78	0.30	-0.57	
$D_{2.7}$	-195.97	-197.72	-197.56	0.20	-0.16	
ZLI 1695 (¹⁹ F)						
D _{7,8}	264.87	267.92	268.11	0.31	-0.19	
$D_{8,9}$	408.31	414.60	415.29	0.64	-0.69	
$D_{8,10}$	61.98	62.28	62.29	0.11	-0.01	
$D_{8.11}$	38.87	39.08	39.06	0.11	0.02	
$D_{8.12}$	52.43	52.84	52.80	0.11	0.04	
$D_{7,10}$	38.01	37.99	37.97	0.10	0.02	
$D_{1,10}$	23.73	23.76	23.59	0.10	0.17	
$D_{1,7}$	621.10	635.97	636.52	1.50	-0.55	
$D_{2,10}$	30.83	30.93	30.78	0.10	0.15	
D_{27}	108.02	109.00	108.98	0.11	0.02	

	Atom pair	r _a	<i>u</i> (exp.)	k	<i>u</i> (calc.)
u_4	C(2)–H(8)	109.2(2)	7.0(7)	1.7	7.7
u_3	C(1) - F(7)	134.7(2)	4.4(tied to $u1$)	0.6	4.4
u_1	C(1)-C(2)	139.0(1)	4.5(1)	0.3	4.5
u_2	C(2)-C(3)	139.6(2)	4.5(tied to $u1$)	0.4	4.5
u_7	C(1)…H(8)	214.6(2)	9.4(tied to <i>u</i> 12)	1.0	9.8
u_{13}	C(2)…H(9)	216.8(1)	9.4(tied to <i>u</i> 12)	1.0	9.8
u_{12}	C(2)····F(7)	235.4(1)	5.9(2)	0.4	6.1
u_5	$C(1)\cdots C(3)$	239.6(2)	5.3(tied to <i>u</i> 12)	0.2	5.6
u_{11}	C(2)····C(6)	243.1(2)	5.4(tied to <i>u</i> 12)	0.2	5.6
u_{20}	H(8)…H(9)	252.1(1)	15.5(fixed)	1.3	15.5
u_{17}	F(7)…H(8)	258.6(1)	12.5(tied to <i>u</i> 12)	0.9	13.0
u_6	$C(1)\cdots C(4)$	273.4(4)	7.2(tied to <i>u</i> 10)	0.2	6.0
u_{10}	$C(2) \cdots C(5)$	280.1(2)	7.5(5)	0.1	6.2
u_8	C(1)…H(9)	338.9(2)	9.6(12)	0.7	9.6
u_{16}	C(2)…H(12)	340.2(2)	9.7(tied to <i>u</i> 8)	0.6	9.6
u_{14}	C(2)…F(10)	361.9(1)	6.6(3)	0.2	6.3
u_{15}	C(2)…H(11)	388.4(2)	7.2(24)	0.5	9.5
u_9	C(1) - F(10)	407.8(2)	6.8(6)	0.1	6.4
u_{22}	H(8)…H(12)	427.8(3)	13.1(fixed)	0.8	13.1
u_{18}	F(7)…H(9)	451.1(2)	9.0(17)	0.5	10.8
u_{21}	H(8)…H(11)	496.4(3)	11.9(fixed)	0.7	11.9
u_{19}	F(7)…F(10)	542.0(3)	7.6(9)	0.0	6.8

Table S3 Interatomic distances (r_a/pm), refined and calculated (MM3) amplitudes of vibration (u/pm) and perpendicular distance corrections (k/pm) from the combined electron diffraction and LCNMR refinement of 1,4-difluorobenzene.^{*a*}

^{*a*} Values in parentheses are the uncertainties on the last digits.

$\frac{p_2}{-52}$ $\frac{p_3}{-68}$	$\frac{p_4}{-54}$	56	<i>P</i> ₆ 74 -65	<i>p</i> ₇ -65	p_8 -70	<i>P</i> ⁹	<i>P</i> ₁₀ 74	<i>p</i> ₁₁ -67	<i>p</i> ₁₂ -65	p_{13} 63	<i>P</i> ¹⁴ 82	<i>P</i> 15 59	<i>P</i> ¹⁶ 73	<i>P</i> ¹⁷ -62	<i>P</i> ¹⁸ -69	$\frac{p_{19}}{64}$ -93 -63	p_{20}	<i>p</i> ²² 51	$\frac{p_{23}}{-56}$	$\frac{4}{50}$ $\frac{u_1}{29}$	4 k ₂
						-81	-76	76 82	69 -72	-76 82 -77	-53 -53 -55 -55	-71 76 -72	-78 79	72 -77 74	76 -75		53		-54		
											-75	72	-71 84	-73 -51 -68	68 80 78		51				
a a amente	a with	10240	101.01	/		-	-												I	55	52 6

Electronic Supplementary Material for PCCP This journal is © The Owner Societies 2007

	x	У	Z
C(1)	-1.3671	0.0000	0.0000
C(2)	-0.6968	1.2150	0.0000
C(3)	0.6968	1.2150	0.0000
C(4)	1.3671	0.0000	0.0000
C(5)	0.6968	-1.2150	0.0000
C(6)	-0.6968	-1.2150	0.0000
F(7)	-2.7103	0.0000	0.0000
H(8)	-1.2585	2.1368	0.0000
H(9)	1.2585	2.1368	0.0000
F(10)	2.7103	0.0000	0.0000
H(11)	1.2585	-2.1368	0.0000
H(12)	-1.2585	-2.1368	0.0000

Table S5 Cartesian coordinates in Å for the final refined structure (r_{h0}) of 1,4-difluorobenzene.

Figure S1 Experimental and difference (experimental minus theoretical) molecularscattering intensity curves for 1,4-difluorobenzene.

