Calculated data for $Br - (H_2S)_n$ clusters (n=1-4)

Key:

Calculations were performed at either the MP2/aug-cc-pvdz or MP2/aug-cc-pvtz levels of theory. The data are labeled pvdz or pvtz in the tables

Bond lengths are denoted r(A-B), and are given in Ångström (10⁻¹⁰ metre)

Angles are denoted by θ (A-B-C), and are given in degrees

Zero point energy (zpe), given in kcal/mol

E_{MP2} and E_{e/BSSE} are the electronic energies (MP2, and MP2 corrected for Basis Set Superposition Error), in units of hartrees.

 $\Delta E_{e/BSSE}$ is the energy separation between stationary points of the same cluster size. $\Delta E_{e/BSSE/Corr}$ is corrected for zpe differences, both are given in kcal/mol

 $\Delta H_{n \rightarrow n+1}^{295K}$ is the enthalpy change for ligand association, in kcal/mol. This is also termed the ligand binding energy in the paper. Vibrational data given in units of cm⁻¹, while the infrared intensities are in km/mol (bold text following the vibrational wavenumber)

Dimer Structures: Br⁻-H₂S

	Vibrational Frequencies										
	MP2/aug-cc-pvdz	MP2/aug-cc-pvtz									
$\omega_I a'$	2764 3	2779 2									
$\omega_2 a'$	2246 1923	2157 2312									
ω ₃ a ′	1180 5	1194 7									
ω₄ a ′	277 6	294 5									
ω ₅ a ′	119 28	134 33									
ω ₆ a "	528 1	563 <1									

 C_s symmetry minimum

	$r(Br H_b)$	$r(S-H_b)$	$r(S-H_t)$	$\theta(Br-H_b-S)$	Ө (H-S-H)	zpe	E _{MP2}	$E_{e/BSSE}$	$\Delta E_{e/BSSE}$	$\Delta E_{e/BSSE/Corr}$	ΔH_{0}
pvdz	2.288	1.392	1.349	177.4	92.4	10.2	-2971.481629	-2971.478801	0.0	0.0	-10.3
pvtz	2.207	1.388	1.336	177.6	92.2	10.2	-2971.704139	-2971.701079	0.0	0.0	-11.1

VSCF and LEVEL 7.5 data for Br⁻-H₂S at MP2/aug-cc-pvdz and -pvtz

	$\omega_l a'$	$\omega_2 a'$	$\omega_3 a'$	ω ₄ a ′	$\omega_5 a'$	$\omega_6 a''$	zpe
aug-cc-pvdz							
Harmonic	2764 4	2246 1923	1180 5	277 6	119 28	528 1	10.2
vscf	2645	1923	1154	406	119	606	9.8
cc-vscf	2651 7	1951 1912	1153 3	392 8	118 26	597 4	9.8
cc-vscf-qff	2652 8	1921 1970	1153 3	417 8	117 26	610 4	9.8
aug-cc-pvtz							
Harmonic	2779 2	2157 2312	1194 7	294 5	134 33	563 <1	10.2
Vscf	2664	1859	1164	401	128	592	
cc-vscf	2670 6	1893 2073	1163 4	386 7	127 29	593 3	
cc-vscf-qff	2672 6	1854 2149	1162 4	419 7	125 28	613 3	
Level 7.5		1847					

Data for H₂S and Br⁻ at MP2/aug-cc-pvdz and -pvtz

	Ŀ	I_2S	Br				
	aug-cc-pvdz	aug-cc-pvtz	aug-cc-pvdz	aug-cc-pvtz			
$r(S-H)^a$	1.350 (14)	1.336 (0)					
θ (H-S-H) ^{<i>a</i>}	92.5 (4)	92.2 (1)					
$\omega_1(a_I)$	2755 <1	2773 <1					
$\omega_2(a_1)$	1193 1	1211 1					
$\omega_3(b_2)$	2780 <1	2793 1					
zpe	9.6	9.7					
E_{MP2}	-398.853219	-398.9088179	-2572.609288	-2572.774831			

^{*a*} Numbers in parentheses are differences between calculated and experimental values taken from; T. H. Edwards, N. K. Moncur and L. E. Snyder, *J. Chem. Phys.*, 1967, **46**, 2139

	Vibrational Frequencies										
	MP2/aug-cc-pvdz	MP2/aug-cc-pvtz									
$\omega_I a_I$	2718 96	2725 126									
$\omega_2 a_1$	1111 74	1119 78									
$\omega_3 a_1$	99 9	104 10									
$\omega_4 b_1$	385 8	399 5									
$\omega_5 b_2$	2711 1	2711 2									
$\omega_6 b_2$	259 <i>i</i> 14	285 <i>i</i> 12									

 $C_{2\nu}$ symmetry, 1 imaginary frequency (b_2)

	$r(Br H_b)$	$r(S-H_b)$	$\theta(Br-H_b-S)$	Ө (H-S-H)	zpe	E_{MP2}	$E_{e/BSSE}$	$\Delta E_{e/BSSE}$	$\Delta E_{e/BSSE/Corr}$
pvdz	2.917	1.355	117.5	87.5	10.0	-2971.477268	-2971.475395	2.1	1.9
pvtz	2.829	1.343	117.5	87.0	10.1	-2971.699093	-2971.697303	2.4	2.3

	Vibrational Frequencies										
	MP2/aug-cc-pvdz	MP2/aug-cc-pvtz									
$\boldsymbol{\omega}_{l} a_{l}$	2717 37	2736 33									
$\omega_2 a_1$	1190 6	1209 7									
$\omega_3 a_1$	40 6	44 7									
$\omega_4 b_1$	196 31	200 29									
$\boldsymbol{\omega}_5 \boldsymbol{b}_2$	2744 8	2757 5									
$\omega_6 b_2$	172 <i>i</i> 7	175 <i>i</i> 6									

 $C_{2\nu}$ symmetry, 1 imaginary frequency (b_2)

	<i>r</i> (<i>BrS</i>)	$r(S-H_t)$	$\theta(Br-S-H_t)$	Ө (H-S-H)	zpe	E_{MP2}	$E_{e/BSSE}$	$\Delta E_{e/BSSE}$	$\Delta E_{e/BSSE/Corr}$
pvdz	3.916	1.354	134.8	90.4	9.9	-2971.461387	-2971.460710	11.3	11.0
pvtz	3.828	1.341	135.0	90.1	9.9	-2971.683319	-2971.682604	11.6	11.3

	Vibrational Fre	quencies
	MP2/aug-cc-pvdz	MP2/aug-cc-pvtz
$\omega_I a$	2761 2	2776 1
$\omega_2 a$	2739 12	2759 8
$\omega_3 a$	2442 1046	2376 1429
₩ 4 a	2311 1150	2262 1185
$\omega_5 a$	1183 13	1200 12
$\omega_6 a$	1180 5	1194 6
w 7 <i>a</i>	520 5	543 4
$\omega_8 a$	461 2	497 1
₩ 9 <i>a</i>	269 4	286 4
ω ₁₀ a	257 5	271 4
ω ₁₁ a	241 1	234 1
$\omega_{12} a$	125 24	136 26
w 13 a	105 15	114 16
w 14 a	61 2	581
$\omega_{15} a$	53 11	36 14

Trimer Structures: Br⁻-(H₂S)₂

 C_1 symmetry, minimum

	$r(Br H_b)$	$r(S-H_b)$	$r(S-H_t)$	$\theta(Br-H_b-S)$	Ө (H-S-H)	$\theta(H_b - Br - H_b)$	zpe	E_{MP2}	$E_{e/BSSE}$	$\Delta E_{e/BSSE}$	△E _{e/BSSE/Corr}	ΔH_{1}
pvdz	2.406 D	1.376	1.352	169.1	91.1	71.1	21.0	-3370.353626	-3370.347560	0.0	0.0	-8.7
	2.323 A	1.386	1.350	175.4	92.2							
pvtz	2.313 D	1.371	1.338	171.3	91.1	71.4	21.1	-3370.632446	-3370.626615	0.0	0.0	-9.4
	2.260 A	1.378	1.337	175.1	91.9							

D=*H*-bond donor, *A*=*H*-bond acceptor

HSH...SH₂ Hbond angle = 138.3° (apvdz) 132.4° (apvtz)

	Vibrational Frequencies										
	MP2/aug-cc-pvdz	MP2/aug-cc-pvtz									
$\omega_l a'$	2766 3	2778 2									
$\omega_2 a'$	2757 <1	2771 <1									
ω ₃ a ′	2409 1292	2360 1534									
ω ₄ a ′	2322 1075	2256 1251									
ω ₅ a ′	1197 4	1215 5									
ω ₆ a ′	1181 1	1198 1									
ω ₇ α′	277 11	298 4									
ω ₈ a ′	273 7	289 12									
ω ₉ a ′	124 23	135 26									
ω ₁₀ a ′	103 12	112 13									
ω11 α'	43 1	42 <1									
ω ₁₂ a "	492 1	523 <1									
ω ₁₃ a ″	460 <1	488 <1									
ω ₁₄ a "	107 <1	107 <1									
ω ₁₅ a "	141 <i>i</i> 21	142 <i>i</i> 19									

 C_s symmetry, one imaginary frequency (a")

$r(Br H_b)$	$r(S-H_b)$	$r(S-H_t)$	$\theta(Br-H_b-S)$	Ө (H-S-H)	$\theta(H_b - Br - H_b)$	zpe	E_{MP2}	$E_{e/BSSE}$	$\Delta E_{e/BSSE}$	$\Delta E_{e/BSSE/Corr}$
2.377 D	1.379	1.350	174.7	92.4	68.8	20.8	-3370.352205	-3370.346267	0.8	0.6
2.328 A	1.384	1.350	180.0	92.6						
2.302 D	1.372	1.337	175.0	92.3	69.3	20.8	-3370.631051	-3370.625254	0.9	0.6
2.255 A	1.378	1.336	179.5	92.4						
	r(Br [.] H _b) 2.377 D 2.328 A 2.302 D 2.255 A	r(Br·H _b) r(S-H _b) 2.377 D 1.379 2.328 A 1.384 2.302 D 1.372 2.255 A 1.378	$r(Br^{-}H_b)$ $r(S-H_b)$ $r(S-H_l)$ 2.377 D1.3791.3502.328 A1.3841.3502.302 D1.3721.3372.255 A1.3781.336	$r(Br^{-}H_b)$ $r(S-H_b)$ $r(S-H_t)$ $\theta(Br-H_b-S)$ 2.377 D1.3791.350174.72.328 A1.3841.350180.02.302 D1.3721.337175.02.255 A1.3781.336179.5	$r(Br^{-}H_b)$ $r(S-H_b)$ $r(S-H_t)$ $\theta(Br-H_b-S)$ $\theta(H-S-H)$ 2.377 D1.3791.350174.792.42.328 A1.3841.350180.092.62.302 D1.3721.337175.092.32.255 A1.3781.336179.592.4	$r(Br^{-}H_b)$ $r(S-H_b)$ $r(S-H_t)$ $\theta(Br-H_b-S)$ $\theta(H-S-H)$ $\theta(H_b-Br-H_b)$ 2.377 D1.3791.350174.792.468.82.328 A1.3841.350180.092.6 $(3302 D)$ 1.3721.337175.092.369.32.255 A1.3781.336179.592.4 $(3302 D)$ (337) (336) (370) (370)	$r(Br^{-}H_b)$ $r(S-H_b)$ $r(S-H_l)$ $\theta(Br-H_b-S)$ $\theta(H-S-H)$ $\theta(H_b-Br-H_b)$ zpe 2.377 D1.3791.350174.792.468.820.82.328 A1.3841.350180.092.6-2.302 D1.3721.337175.092.369.320.82.255 A1.3781.336179.592.4	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

D=*H*-bond donor, *A*=*H*-bond acceptor

HSH...SH₂ Hbond angle = 133.3° (apvdz)

	Vibrational Frequencies								
	MP2/aug-cc-pvdz	MP2/aug-cc-pvtz							
$\omega_I a_I$	2765 1	2780 1							
$\omega_2 a_1$	2380 1471	2329 1681							
$\omega_3 a_1$	1192 5	1210 7							
$\omega_4 a_1$	279 16	298 13							
$\omega_5 a_1$	122 21	133 23							
$\omega_6 a_1$	36 <1	33 <1							
$\omega_7 a_2$	482 0	509 0							
$\omega_8 a_2$	154 <i>i</i> 0	149 <i>i</i> 0							
$\omega_9 b_1$	493 2	521 1							
$\boldsymbol{\omega}_{I\theta} \boldsymbol{b}_{I}$	61 14	60 13							
$\boldsymbol{\omega}_{II} \boldsymbol{b}_2$	2762 6	2778 2							
$\boldsymbol{\omega}_{12} \boldsymbol{b}_2$	2329 1034	2265 1279							
$\omega_{I3} b_2$	1180 1	1196 1							
$\omega_{14} b_2$	251 1	260 1							
$\boldsymbol{\omega}_{15} \boldsymbol{b}_2$	106 15	116 17							

		$r(Br H_b)$	$r(S-H_b)$	$r(S-H_t)$	$\theta(Br-H_b-S)$	Ө (H-S-H)	$\theta(H_b - Br - H_b)$	zpe		E _{e/BSSE}	$\Delta E_{e/BSSE}$	$\Delta E_{e/BSSE/Corr}$
p	ovdz	2.345	1.383	1.349	177.1	92.5	78.9	20.6	-3370.352044	-3370.346154	0.9	0.5
p	ovtz.	2.272	1.376	1.336	177.2	82.3	80.3	20.7	-3370.630878	-3370.625030	1.0	0.6

		Vibrational Free	quencies
		MP2/aug-cc-pvdz	MP2/aug-cc-pvtz
0	$\mathfrak{d}_1 a_1$	2765 5	2781 2
0	$\mathfrak{v}_2 a_1$	2398 541	2348 520
0	$\mathfrak{D}_3 a_1$	1187 5	1204 6
0	04 a1	255 2	272 3
0	$\mathfrak{D}_5 a_1$	107 7	116 6
0	$\mathfrak{D}_6 a_1$	6 <1	7 <1
0	$\mathfrak{v}_7 a_2$	485 0	515 0
0	$\mathfrak{D}_8 a_2$	36i 0	32 <i>i</i> 0
0	1 09 b1	481 3	508 2
0	010 b 1	19 <i>i</i> 22	16 <i>i</i> 19
0	011 b2	2765 <1	2781 <1
0	$b_{12} b_2$	2361 2279	2299 2901
0	$\mathfrak{v}_{13} b_2$	1183 6	1199 9
0	$\mathfrak{v}_{14} b_2$	250 10	263 7
0	$\mathfrak{v}_{15} b_2$	116 34	128 43

 C_{2v} symmetry, two imaginary frequencies (a_1 and b_2)

	$r(Br H_b)$	$r(S-H_b)$	$r(S-H_t)$	$\theta(Br-H_b-S)$	Ө (H-S-H)	$\theta(H_b - Br - H_b)$	zpe	E_{MP2}	$E_{e/BSSE}$	$\Delta E_{e/BSSE}$	$\Delta E_{e/BSSE/Corr}$
pvdz	2.357	1.381	1.349	176.1	92.3	112.8	20.5	-3370.351325	-3370.345916	1.0	0.5
pvtz	2.282	1.374	1.336	176.3	92.1	118.6	20.6	-3370.630247	-3370.624656	1.2	0.7

Tetramer Structures: Br⁻-(H₂S)₃

 C_3 symmetry, minimum

	$r(Br-H_b)$	$r(S-H_b)$	$r(S-H_t)$	$\theta(Br-H_b-S)$	Ө(H-S-H)	$\theta(H_b - Br - H_b)$	zpe	E_{MP2}	$E_{e/BSSE}$	$\Delta E_{e/BSSE}$	$\Delta E_{e/BSSE/Corr}$	ΔH_2
pvdz	2.425	1.375	1.354	167.1	90.9	71.2	32.3	-3769.226633	-3769.216586	0.0	0.0	-8.6

HSH...SH₂ Hbond angle = 142.1° (apvdz)

Vibra	tional Frequencies
	MP2/aug-cc-pvdz
$\omega_I a$	2719 1
$\omega_2 a$	2494 1132
$\omega_3 a$	1182 16
$\omega_4 a$	469 <1
$\omega_5 a$	348 <1
$\omega_6 a$	273 4
$\omega_7 a$	129 18
$\omega_{s} a$	73 2
w9 e	2725 34 (68)
$\omega_{I0} e$	2443 392 (784)
w ₁₁ <i>e</i>	1181 9 (18)
$\omega_{I2} e$	473 10 (20)
w ₁₃ e	257 2 (4)
$\omega_{I4} e$	221 9 (18)
$\omega_{15} e$	103 7 (14)
w 16 e	59 1 (2)

|--|

	$r(Br H_b)$	$r(S-H_b)$	$r(S-H_t)$	$\theta(Br-H_b-S)$	Ө (H-S-H)	$\theta(H_b - Br - H_b)$	zpe	E_{MP2}	$E_{e/BSSE}$	$\Delta E_{e/BSSE}$	$\Delta E_{e/BSSE/Corr}$
pvdz	2.436 <i>l</i>	1.372	1.353	166.7	91.0	71.7 <i>l-m</i>	32.1	-3769.224624	-3769.215008	1.0	0.8
	2.438 m	1.374	1.353	166.8	90.9	70.2 <i>m</i> - <i>r</i>					
	2.383 r	1.378	1.351	173.7	92.0	66.9 <i>r-l</i>					

l=left, m=middle, r=right

HSH...SH₂ Hbond angles = $142.8^{\circ} l \cdot m$ 143.0° $m \cdot r$

Vibrational Frequencies						
	MP2/aug-cc-pvdz					
$\omega_1 a$	2755 3					
$\omega_2 a$	2731 22					
$\omega_3 a$	2722 23					
$\omega_4 a$	2510 929					
$\omega_5 a$	2466 451					
$\omega_6 a$	2412 635					
$\omega_7 a$	1186 5					
$\omega_8 a$	1183 10					
w ₉ a	1181 9					
$\omega_{10} a$	490 6					
ω ₁₁ a	464 7					
$\omega_{12} a$	430 5					
ω ₁₃ a	311 7					
ω ₁₄ a	267 4					
$\omega_{15} a$	254 5					
$\omega_{16} a$	248 3					
ω ₁₇ a	200 6					
ω ₁₈ a	149 11					
$\omega_{19} a$	128 18					
$\omega_{20} a$	103 6					
$\omega_{21} a$	101 7					
$\omega_{22} a$	68 2					
$\omega_{23} a$	57 0					
$\omega_{24} a$	28 0					

	1	•••
· / ·	aummotru	minimim
	SVIIIIIEH V.	
\sim s	sjinneerj,	1111111100111

	C _s symmetry, minimum										
	$r(Br H_b)$	$r(S-H_b)$	$r(S-H_t)$	$\theta(Br-H_b-S)$	Ө (H-S-H)	$\theta(H_b - Br - H_b)$	zpe	E_{MP2}	$E_{e/BSSE}$	$\Delta E_{e/BSSE}$	$\Delta E_{e/BSSE/Corr}$
pva	z 2.438 D	1.372	1.352	169.0	91.3	113.5 <i>D</i> - <i>D</i>	31.8	-3769.223913	-3769.214714	1.2	0.7
	2.353 A	1.382	1.351	174.0	92.0	70.1 A-D					

D=H-bond donors, A=H-bond acceptor

HSH...SH₂ Hbond angle = 136.5°

Vibrat	Vibrational Frequencies							
	MP2/aug-cc-pvdz							
$\omega_l a'$	2754 1							
$\omega_2 a'$	2744 6							
$\omega_3 a'$	2506 541							
ω ₄ a ′	2363 740							
$\omega_5 a'$	1186 7							
ω ₆ a ′	1177 2							
ω ₇ α ′	437 2							
ω ₈ a ′	260 8							
ω9 a '	238 4							
ω ₁₀ a ′	203 5							
ω ₁₁ a ′	123 17							
ω ₁₂ a ′	94 2							
ω ₁₃ a ′	53 1							
ω ₁₄ a ′	8 <1							
ω ₁₅ a "	2743 9							
ω ₁₆ a "	2476 1079							
ω ₁₇ a "	1185 16							
ω ₁₈ a "	513 6							
ω ₁₉ a "	430 2							
$\omega_{20} a''$	265 <1							
$\omega_{21} a''$	247 <1							
$\omega_{22} a''$	114 26							
$\omega_{23} a''$	65 <1							
$\omega_{24} a''$	42 17							

$\boldsymbol{\alpha}$	4	• •	•	C	•	$(\cap ")$	· •		<u>۸</u> ۸
1 21	symmetry	C1V 11	naainarv	Trealle	ncies	1/n''	_ 10'	· + /	0"
U In	symmetry,	SIA II	magmary	negue	nucius	\ <i>_u</i>	<u></u> c		-c /
	J J /		<i>(</i>) <i>)</i>						

pvdz 2.402 1.375 1.349 176.6 92.3 120.0 30.9 -3769.219449 -3769.211571 3.2 1.8		$r(Br-H_b)$	$r(S-H_b)$	$r(S-H_t)$	$\theta(Br-H_b-S)$	Ө (H-S-H)	$\theta(H_b - Br - H_b)$	zpe	E_{MP2}	$E_{e/BSSE}$	$\Delta E_{e/BSSE}$	$\Delta E_{e/BSSE/Corr}$
	pvdz.	2.402	1.375	1.349	176.6	92.3	120.0	30.9	-3769.219449	-3769.211571	3.2	1.8

Vibrat	Vibrational Frequencies							
	MP2/aug-cc-pvdz							
$\omega_1 a'$	2766 0							
$\omega_2 a'$	2486 0							
$\omega_3 a'$	1185 0							
ω4 α'	231 0							
$\omega_5 a'$	94 0							
ω ₆ a "	438 7							
$\omega_7 a''$	8 <i>i</i> <1							
ω ₈ a "	49 <i>i</i> 31							
w ₉ e'	2766 3							
ω ₁₀ e ′	2443 1655							
ω ₁₁ e ′	1188 8							
ω ₁₂ e'	231 10							
ω ₁₃ e ′	112 21							
ω ₁₄ e '	5 <i>i</i> <1							
ω ₁₅ e "	448 0							
ω ₁₆ e "	25 <i>i</i> 0							

C_s symmetry, one imaginary frequency (a	a ''')
--	-------	---

H_2Ss bound to anion					•	<i>.</i>		• • •			
	$r(Br H_b)$	$r(S-H_b)$	$r(S-H_t)$	$\theta(Br-H_b-S)$	Ө (H-S-H)	$\theta(H_b - Br - H_b)$	zpe	E_{MP2}	$E_{e/BSSE}$	$\Delta E_{e/BSSE}$	$\Delta E_{e/BSSE/Corr}$
pvdz	2.319	1.383	1.350	174.6	92.3	128.3	31.3	-3769.220052	-3769.211406	3.3	2.3
	Satelli	te H ₂ S									
	$r(SH_b)$	$r(S-H_b)$	$\theta(S-H_b-S)$	Ө (H-S-H)							
pvdz	2.809	1.353	164.7	92.1							

HSH...SH₂ Hbond angles = 164.7°

r	
Vibrat	ional Frequencies
	MP2/aug-cc-pvdz
$\omega_l a'$	2760 1
$\omega_2 a'$	2716 60
$\omega_3 a'$	2380 478
$\omega_4 a'$	1181 9
$\omega_5 a'$	1158 1
$\omega_6 a'$	501 3
ω ₇ α ′	328 4
ω ₈ α ′	249 12
ω ₉ a '	114 4
ω ₁₀ α ′	110 29
ω ₁₁ a '	72 1
ω ₁₂ α'	28 <1
ω ₁₃ a ′	8 <1
ω ₁₄ a "	2760 1
ω ₁₅ a "	2732 95
ω ₁₆ a "	2329 2172
ω ₁₇ a "	1183 <1
ω ₁₈ a "	499 19
ω ₁₉ a "	293 <1
$\omega_{20} a''$	251 2
ω ₂₁ a "	125 37
$\omega_{22} a''$	83 <1
$\omega_{23} a''$	59 <1
$\omega_{24} a''$	154 <i>i</i> 22

2	
•	

 C_s symmetry, two imaginary frequencies (2*a*")

	$r(Br H_b)$	$r(S-H_b)$	$r(S-H_t)$	$\theta(Br-H_b-S)$	Ө (H-S-H)	$\theta(H_b - Br - H_b)$	zpe	E_{MP2}	$E_{e/BSSE}$	$\Delta E_{e/BSSE}$	$\Delta E_{e/BSSE/Corr}$
pvdz	2.362 <i>l</i>	1.380	1.350	172.2	91.7	69.5	30.9	-3769.213204	-3769.205165	7.2	5.8
	2.270 b	1.391	1.348	178.8	93.6						
	Satelli	te H ₂ S									
	$r(SH_b)$	$r(S-H_b)$	Ө (H-S-H)								
pvdz	3.342 <i>l</i>	1.350	92.3								
	2.692 b	1.354									

l=*left*, *b*=*bottom*

 $HSH...SH_2 \text{ Hbond angles} = 135.8^{\circ} l-b$ $168.4^{\circ} sat-b$

76.4° sat-l

Vibrat	Vibrational Frequencies							
	MP2/aug-cc-pvdz							
$\omega_1 a'$	2769 3							
$\omega_2 a'$	2763 4							
ω ₃ a ′	2762 1							
ω₄ a ′	2718 80							
$\omega_5 a'$	2390 1332							
ω ₆ a ′	2234 1449							
ω ₇ a ′	1203 7							
ω ₈ a ′	1189 12							
ω ₉ a ′	1174 2							
ω ₁₀ a ′	291 12							
ω ₁₁ a ′	288 7							
ω ₁₂ a ′	167 6							
ω ₁₃ a ′	136 23							
ω ₁₄ a ′	110 16							
ω ₁₅ a ′	75 5							
ω ₁₆ a ′	46 2							
ω ₁₇ a ′	35 <1							
ω ₁₈ a "	498 1							
$\omega_{19} a''$	454 1							
$\omega_{20} a''$	220 2							
$\omega_{21} a''$	89 3							
$\omega_{22} a''$	15 1							
$\omega_{23} a''$	165 <i>i</i> 19							
$\omega_{24} a''$	202 <i>i</i> 10							

Pentamer Structures: Br⁻-(H₂S)₄

α			•	•
· · ·	01	mmotry	min	imim
	- 51	VIIIIIEIIV.		
\sim $^{\prime}$	· •	,		

_	-1.5,,,,											6		
		$r(Br-H_b)$	$r(S-H_b)$	$r(S-H_t)$	$\theta(Br-H_b-S)$	Ө (H-S-H)	$\theta(H_b - Br - H_b)$	zpe	E_{MP2}	$E_{e/BSSE}$	$\Delta E_{e/BSSE}$	$\Delta E_{e/BSSE/Corr}$	$\Delta H_{3} A^{295K}$	G
	pvdz	2.465 l	1.368	1.352	167.6	91.2	70.4 <i>l-f</i>	43.2	-4168.096178	-4168.082711	0.0	0.0	-6.8	u
		2.453 f	1.373	1.356	165.3	90.8	70.5 <i>f</i> -b						Checked	α
		2.483 b	1.369	1.354	164.9	90.9	71.2 <i>b</i> - <i>r</i>							α
	2.451 r 1.371 1.353 167.5 91.0 129.1 <i>r</i> - <i>l</i>								α					
	1-left f-front h-hack r-right									ω				
										α				
		HN	н хни	HDODG 2	$n\sigma les = 14$	2 1° 1-t								

HSH...SH2 Hbond angles = $142.1^{\circ} l-f$ 146.6° f-b 141.9° b-r 141.7° r-f

	Vibrat	ional Frequencies
		MP2/aug-cc-pvdz
	$\omega_1 a$	2736 14
	$\omega_2 a$	2728 23
	$\omega_3 a$	2721 19
	$\omega_4 a$	2700 39
	$\omega_5 a$	2556 605
	$\omega_6 a$	2520 475
	$\omega_7 a$	2498 573
	$\omega_8 a$	2477 270
	ω ₉ a	1186 13
	$\omega_{10} a$	1184 6
	$\omega_{11} a$	1184 13
	$\omega_{12} a$	1180 3
	$\omega_{13} a$	481 10
	$\omega_{14} a$	452 3
	$\omega_{15} a$	448 8
	$\omega_{16} a$	408 6
1	$\omega_{17} a$	374 3
	ω ₁₈ a	270 5
	$\omega_{19} a$	267 2
	$\omega_{20} a$	250 5
	$\omega_{21} a$	244 5
	$\omega_{22} a$	233 3
	$\omega_{23} a$	226 12
	$\omega_{24} a$	189 7
	$\omega_{25} a$	127 13
	$\omega_{26} a$	114 15
	$\omega_{27} a$	99 5
	$\omega_{28} a$	92 <1
	$\omega_{29} a$	74 2
	$\omega_{30} a$	68 <1
	$\omega_{31} a$	61 <1
	$\omega_{32} a$	48 < 1
	$\omega_{33} a$	22 <1

	80		
6	•		
	<u> </u>	-	C ₄

pvdz

			C_4	symmetry	, minimum					
$r(Br-H_b)$	$r(S-H_b)$	$r(S-H_t)$	$\theta(Br-H_b-S)$	Ө (H-S-H)	$\theta(H_b - Br - H_b)$	zpe	E_{MP2}	$E_{e/BSSE}$	$\Delta E_{e/BSSE}$	$\Delta E_{e/BSSE/Corr}$
2.467	1.371	1.353	167.0	91.0	67.7	43.3	-4168.096027	-4168.082724	< 0.1	0.1

HSH...SH2 Hbond angles = 142.7°

Vibrat	tional Frequencies
	MP2/aug-cc-pvdz
$\omega_1 a$	2720 2
$\omega_2 a$	2549 704
$\omega_3 a$	1178 15
$\omega_4 a$	451 <1
$\omega_5 a$	358 4
$\omega_6 a$	258 8
$\omega_7 a$	124 12
$\omega_8 a$	58 1
ω9 b	2727 0
$\omega_{10} b$	2497 0
$\omega_{11} b$	1192 0
$\boldsymbol{\omega}_{12} \boldsymbol{b}$	463 0
ω ₁₃ b	251 0
$\omega_{14} b$	173 0
$\omega_{15} b$	90 0
ω ₁₆ b	74 0
ω ₁₇ b	17 0
ω ₁₈ e	2724 61 (132)
ω ₁₉ e	2502 603 (1206)
$\omega_{20} e$	1184 11 (22)
$\omega_{21} e$	457 16 (32)
ω ₂₂ e	268 7 (14)
ω ₂₃ <i>e</i>	253 <1 (1)
ω ₂₄ e	110 11 (22)
$\omega_{25} e$	65 2 (4)

0		• •
· / `-	aummatru	minimiim
- U/	SVIIIIICU V.	IIIIIIIIIIIIIIIIIIIII
- 1		

	$r(Br-H_b)$	$r(S-H_b)$	$r(S-H_t)$	$\theta(Br-H_b-S)$	Ө (H-S-H)	$\theta(H_b - Br - H_b)$	zpe	E_{MP2}	$E_{e/BSSE}$	$\Delta E_{e/BSSE}$	∆E _{e/BSSE/Corr}
pvdz	2.409 <i>l</i>	1.374	1.351	173.4	92.0	70.2 <i>l-b</i>	43.0	-4168.094283	-4168.081239	0.9	0.7
	2.497 b	1.369	1.354	164.5	91.0	70.8 <i>b</i> - <i>t</i>					
	2.461 t	1.370	1.355	165.2	91.0	70.4 <i>t</i> - <i>r</i>					
	2.475 r	1.368	1.353	166.9	91.1	126.3 <i>r</i> - <i>l</i>					

HSH...SH2 Hbond angles = $143.5^{\circ} b-l$ 146.8° t-b 143.1° r-t

Vibrational Frequencies									
	MP2/aug-cc-pvdz								
$\omega_1 a$	2757 2								
$\omega_2 a$	2732 20								
$\omega_{3}a$	2722 26								
$\omega_4 a$	2710 33								
$\omega_5 a$	2564 622								
$\omega_6 a$	2530 397								
$\omega_7 a$	2510 308								
$\omega_8 a$	2461 697								
w ₉ a	1188 9								
$\omega_{10} a$	1186 7								
$\omega_{11} a$	1184 7								
$\omega_{12} a$	1182 5								
$\omega_{13} a$	470 6								
$\omega_{14} a$	447 8								
$\omega_{15} a$	442 6								
$\omega_{16} a$	402 7								
$\omega_{17} a$	342 9								
$\omega_{18} a$	261 5								
ω ₁₉ a	258 <1								
$\omega_{20} a$	249 5								
$\omega_{21} a$	235 <1								
$\omega_{22} a$	230 7								
$\omega_{23} a$	194 8								
$\omega_{24} a$	141 9								
$\omega_{25} a$	125 13								
$\omega_{26} a$	113 17								
$\omega_{27} a$	99 4								
$\omega_{28} a$	92 <1								
$\omega_{29} a$	71 2								
$\omega_{30} a$	63 1								
$\omega_{31} a$	58 <1								
$\omega_{32} a$	26 <1								
$\omega_{33} a$	18 < 1								

	9	-0
g		~

<i>a</i>	• •
(symmetry	minimiim
c ₁ symmetry,	mmmmm

	$r(Br-H_b)$	$r(S-H_b)$	$r(S-H_t)$	$\theta(Br-H_b-S)$	Ө (H-S-H)	$\theta(H_b - Br - H_b)$	zpe	E_{MP2}	$E_{e/BSSE}$	$\Delta E_{e/BSSE}$	$\Delta E_{e/BSSE/Corr}$
pvdz	2.478 <i>l</i>	1.368	1.352	167.2	91.3	69.0 <i>l-f</i>	43.0	-4168.094026	-4168.081028	1.1	0.9
-	2.396 <i>f</i>	1.375	1.351	177.5	92.0	68.6 <i>f</i> - <i>r</i>					
	2.466 r	1.370	1.353	167.2	91.1	72.1 <i>r</i> - <i>t</i>					
	2.494 t	1.367	1.353	163.5	91.0	58.1 <i>t-l</i>					

 $HSH...SH_2 \text{ Hbond angles} = \begin{array}{r} 141.5^{\circ} l f \\ 141.7^{\circ} r f \\ 143.5^{\circ} t - r \end{array}$

Vibrational Frequencies								
VIDIA	MP2/aug_cc_nvdz							
(M) /	2751 4							
$\omega_1 u$	2731 4							
$\omega_2 a$	2730 12							
$\omega_3 a$	2729 20							
$\omega_4 a$	27269							
$\omega_5 a$	25/3 555							
$\omega_6 a$	2541 280							
$\omega_7 a$	2511 675							
$\omega_8 a$	2437 482							
w ₉ a	1190 3							
$\omega_{10} a$	1187 11							
$\omega_{11} a$	1185 7							
$\omega_{12} a$	1180 3							
$\omega_{13} a$	505 7							
$\omega_{14} a$	441 7							
$\omega_{15} a$	409 2							
ω ₁₆ a	394 11							
ω ₁₇ a	322 7							
ω ₁₈ a	260 15							
ω ₁₉ a	253 5							
$\omega_{20} a$	249 1							
$\omega_{21} a$	238 1							
$\omega_{22} a$	220 6							
$\omega_{23} a$	215 11							
$\omega_{24} a$	147 1							
$\omega_{25} a$	126 15							
$\omega_{26} a$	112 15							
$\omega_{27} a$	97 4							
$\omega_{28} a$	89 <1							
$\omega_{29} a$	69 1							
$\omega_{30} a$	62 <1							
$\omega_{31} a$	50 1							
W 32 <i>a</i>	44 <1							
(Q22 ()	20 <1							

7		• • •	•	· ·		`			`	\mathbf{a}	
·	aummatru	Dight in	1001100rv	traduance	AC I	10 1	h l			10 1	
AL	SVIIIIIGU V.		1ay mary	HEUUEHUI	C 8 1 /	201.u. I	1a. 1	111. 4	Ra.	$\Delta \mathbf{E}_{11}$	£
τn	~ / / 7				-~ (-	u, ·	- 27 -	· uz -	27 -	u)	

	$r(Br-H_b)$	$r(S-H_b)$	$r(S-H_t)$	$\theta(Br-H_b-S)$	Ө (H-S-H)	$\theta(H_b - Br - H_b)$	zpe	E_{MP2}	$E_{e/BSSE}$	$\Delta E_{e/BSSE}$	$\Delta E_{e/BSSE/Corr}$
pvdz	2.432	1.370	1.350	176.2	92.3	90.0	41.2	-4168.086645	-4168.075955	4.2	2.2

Vibrat	Vibrational Frequencies							
	MP2/aug-cc-pvdz							
$\omega_1 a_g$	2764 0							
$\omega_2 a_g$	2540 0							
$\omega_3 a_g$	1185 0							
$\omega_4 a_g$	220 0							
$\omega_5 a_g$	90 0							
$\omega_6 a_u$	405 9							
$\omega_7 a_u$	5 <i>i</i> <1							
$\omega_8 a_u$	92 <i>i</i> 39							
$\omega_9 b_g$	2764 0							
$\omega_{10} b_g$	2498 0							
$\omega_{11} b_g$	1197 0							
$\omega_{12} b_g$	234 0							
$\omega_{13} b_g$	86 0							
$\omega_{14} b_g$	13 <i>i</i> 0							
$\omega_{15} b_u$	392 0							
$\omega_{16} b_u$	45 0							
$\omega_{17} b_u$	8i 0							
$\omega_{18} e_g$	421 0							
$\omega_{19} e_g$	56i 0							
$\omega_{20} e_u$	2764 3 (6)							
$\omega_{21} e_u$	2494 1740 (3480)							
$\omega_{22} e_u$	1187 5 (10)							
$\omega_{23} e_u$	218 17 (34)							
$\omega_{24} e_u$	117 27 (54)							
$\omega_{25} e_u$	11 <i>i</i> <1 (<1)							

~			2	• •	•	•
C's symmetry	three	imagina	ry frequ	encies ($2a_{2} +$	h_{1}
C_{2v} symmetry,	unce	magma	ny nequ	cheres ($\Delta u_2 +$	v_{I}

	$r(Br-H_b)$	$r(S-H_b)$	$r(S-H_t)$	$\theta(Br-H_b-S)$	Ө (H-S-H)	$\theta(H_b - Br - H_b)$	zpe	E_{MP2}	$E_{e/BSSE}$	$\Delta E_{e/BSSE}$	$\Delta E_{e/BSSE/Corr}$
pvdz.	2.466 t	1.369	1.350	173.9	92.4	150.5 <i>t</i> - <i>t</i>	41.7	-4168.088135	-4168.076283	4.0	2.5
	2.406 b	1.374	1.349	179.0	92.8	67.7 <i>t-b</i>					
						74.2 <i>b-b</i>					

t=*top*, *b*=*bottom*.

HSH...SH2 Hbond angles = $134.9^{\circ} t-b$

Vibrat	Vibrational Frequencies							
	MP2/aug-cc-pvdz							
$\omega_1 a_1$	2767 3							
$\omega_2 a_1$	2759 1							
$\omega_3 a_1$	2550 3							
$\omega_4 a_1$	2468 1024							
$\omega_5 a_1$	1204 <1							
$\omega_6 a_1$	1190 1							
$\omega_7 a_1$	267 35							
$\omega_8 a_1$	253 1							
$\omega_9 a_1$	114 14							
$\omega_{10} a_1$	90 1							
$\omega_{11} a_1$	50 <1							
$\omega_{12} a_1$	25 <1							
$\omega_{13} a_2$	422 0							
$\omega_{14} a_2$	380 0							
$\omega_{15} a_2$	64 0							
$\omega_{16} a_2$	27 <i>i</i> 0							
$\omega_{17} a_2$	195 <i>i</i> 0							
$\boldsymbol{\omega}_{18} \boldsymbol{b}_{1}$	430 3							
$\omega_{19} b_1$	389 3							
$\omega_{2\theta} b_1$	108 <1							
$\boldsymbol{\omega}_{21} \boldsymbol{b}_1$	5 < 1							
$\boldsymbol{\omega}_{22} \boldsymbol{b}_1$	140 <i>i</i> 35							
$\boldsymbol{\omega}_{23} \boldsymbol{b}_2$	2764 5							
$\omega_{24} b_2$	2759 1							
$\omega_{25} b_2$	2522 1452							
$\omega_{26} b_2$	2446 608							
$\omega_{27} b_2$	1200 5							
$\omega_{28} b_2$	1182 <1							
$\omega_{29} b_2$	249 9							
$\omega_{30} b_2$	242 <1							
$\omega_{31} b_2$	123 38							
$\omega_{32} b_2$	86 <1							
$\omega_{33} b_2$	46 <1							

Calculated data for $Cl^{-}(H_2S)_n$ clusters (n=1-4)

Key:

Calculations were performed at either the MP2/aug-cc-pvdz or MP2/aug-cc-pvtz levels of theory. The data are labeled pvdz or pvtz in the tables

Bond lengths are denoted r(A-B), and are given in Ångström (10⁻¹⁰ metre)

Angles are denoted by θ (A-B-C), and are given in degrees

Zero point energy (zpe), given in kcal/mol

E_{MP2} and E_{e/BSSE} are the electronic energies (MP2, and MP2 corrected for Basis Set Superposition Error), in units of hartrees.

 $\Delta E_{e/BSSE}$ is the energy separation between stationary points of the same cluster size. $\Delta E_{e/BSSE/Corr}$ is corrected for zpe differences, both are given in kcal/mol

 $\Delta H_{n \rightarrow n+1}^{295K}$ is the enthalpy change for ligand association, in kcal/mol. This is also termed the ligand binding energy in the paper. Vibrational data given in units of cm⁻¹, while the infrared intensities are in km/mol (bold text following the vibrational wavenumber)

Dimer Structures: Cl⁻-H₂S

	MP2/aug-cc-pvdz	MP2/aug-cc-pvtz
$\omega_l a'$	2760 6	2778 3
$\omega_2 a'$	2004 2683	1941 2938
ω ₃ α′	1178 4	1194 6
ω₄ a ′	312 7	328 6
$\omega_5 a'$	152 93	169 100
ω ₆ a "	597 2	626 1

 C_s symmetry minimum

		$r(ClH_b)$	$r(S-H_b)$	$r(S-H_t)$	$\theta(Cl-H_b-S)$	Ө (H-S-H)	zpe	E _{MP2}	$E_{e/BSSE}$	$\Delta E_{e/BSSE}$	△E _{e/BSSE/Corr}	ΔH_{0}
pva	lz.	2.034	1.412	1.349	178.4	92.6	10.0	-858.597639	-858.595654	0.0	0.0	-12.7
pvt	z	1.990	1.407	1.336	178.4	92.4	10.1	-858.712218	-858.710652	0.0	0.0	-13.6

VSCF and LEVEL 7.5 for Cl⁻H₂S at MP2/aug-cc-pvdz and -pvtz

	$\omega_l a'$	$\omega_2 a'$	ω ₃ a ′	ω ₄ a ′	$\omega_5 a'$	$\omega_6 a''$	zpe
MP2/aug-cc-pvdz							
harmonic	2760 6	2004 2683	1178 4	312 7	152 93	597 2	10.0
vscf	2644	1520	1149	449	155	674	9.4
cc-vscf	2649 6	1437 2920	1148 4	440 6	154 97	670 2	9.3
cc-vscf-qff	2660 6	1500 3019	1140 4	470 6	147 97	679 2	
MP2/aug-cc-pvtz							
harmonic	2778 3	1941 2938	1194 6	328 6	169 100	626 1	10.1
Vscf	2662	1425	1159	438	172	676	9.3
cc-vscf	2669 4	1389 3063	1156 6	425 5	170 105	670 1	9.3
cc-vscf-qff	2675 11	1664 3162	1151 4	465 8	165 101	686 5	
LEVEL 7.5		1438					

Data for H₂S and Cl⁻ at MP2/aug-cc-pvdz and -pvtz

	H	I_2S	Cľ			
	aug-cc-pvdz	aug-cc-pvtz	aug-cc-pvdz	aug-cc-pvtz		
$r(S-H)^a$	1.350 (14)	1.336 (0)				
θ (H-S-H) ^a	92.5 (4)	92.2 (1)				
$\omega_1(a_1)$	2755 <1	2773 <1				
$\omega_2(a_1)$	1193 1	1211 1				
$\omega_3(b_2)$	2780 <1	2793 1				
zpe	9.6	9.7				
E_{MP2}	-398.853219	-398.9088179	-459.722765	-459.780792		

^{*a*} Numbers in parentheses are differences between calculated and experimental values taken from; T. H. Edwards, N. K. Moncur and L. E. Snyder, *J. Chem. Phys.*, 1967, **46**, 2139

	MP2/aug-cc-pvdz	MP2/aug-cc-pvtz
$\boldsymbol{\omega}_{I} a_{I}$	2716 105	2725 131
$\omega_2 a_1$	1095 78	1107 80
$\omega_3 a_1$	122 28	126 29
$\omega_4 b_1$	406 9.7	416 7
$\boldsymbol{\omega}_5 \boldsymbol{b}_2$	2705 2	2707 3
$\omega_6 b_2$	292 <i>i</i> 14	307 <i>i</i> 12

 C_{2v} symmetry, 1 imaginary frequency (b_2)

	$r(ClH_b)$	$r(S-H_b)$	$\theta(Cl-H_b-S)$	Ө (H-S-H)	zpe	E_{MP2}	$E_{e/BSSE}$	$\Delta E_{e/BSSE}$	∆E _{e/BSSE/Corr}
pvdz	2.749	1.356	116.7	86.9	10.1	-858.591679	-858.590587	3.2	3.3
pvtz	2.685	1.343	116.7	86.5	10.1	-858.705797	-858.705005	3.5	3.5

 $C_{2\nu}$ symmetry, 1 imaginary frequency (b_2)

	r(ClS)	$r(S-H_t)$	$\theta(Cl-S-H_t)$	Ө (H-S-H)	zpe	E_{MP2}	$E_{e/BSSE}$	$\Delta E_{e/BSSE}$	$\Delta E_{e/BSSE/Corr}$
pvdz	3.740	1.355	135.0	90.1	9.9	-858.574752	-858.574368	13.4	13.3
pvtz	3.662	1.341	135.1	89.8	10.0	-858.689074	-858.688756	13.7	13.6

	MP2/aug-cc-pvdz	MP2/aug-cc-pvtz
$\boldsymbol{\omega}_{I} a_{I}$	2713 37	2732 34
$\omega_2 a_1$	1189 5	1209 6
$\omega_3 a_1$	48 21	54 22
$\omega_4 b_1$	210 28	212 26
$\boldsymbol{\omega}_5 \boldsymbol{b}_2$	2740 10	2754 6
$\omega_6 b_2$	179 <i>i</i> 6	184 <i>i</i> 5

Trimer Structures: Cl⁻-(H₂S)₂

				pVD2	Z		pVTZ both C_1 symmetry, both minima					
	$r(ClH_b)$	$r(S-H_b)$	$R(S-H_t)$	$\theta(Cl-H_b-S)$	Ө (H-S-H)	zpe	E_{MP2}	$E_{e/BSSE}$	$\Delta E_{e/BSSE}$	$\Delta E_{e/BSSE/Corr}$	ΔH_{1}	
pvdz	2.200 D	1.383	1.351	170.6	91.2	21.0	-1257.470562	-1257.466224	0.0	0.0	-9.6	
	2.118 A	1.394	1.350	175.9	92.3							
pvtz	2.126 <i>l</i>	1.379	1.338	173.3	91.5	21.1	-1257.641028	-1257.638018	0.0	0.0	-10.5	
	2.097 r	1.383	1.337	175.2	91.9							

D=H-bond donor, A=H-bond acceptor

l=left, *r=right*

HSH...SH₂ Hbond angles 132.9° (apvdz) 123.2° (apvtz)

	MP2/aug-cc-pvdz	MP2/aug-cc-pvtz
$\omega_I a$	2759 2	2774 <1
$\omega_2 a$	2744 6	2767 2
$\omega_3 a$	2362 1259	2293 1725
$\omega_4 a$	2196 1359	2182 1181
$\omega_5 a$	1187 12	1206 9
$\omega_6 a$	1181 5	1197 6
$\omega_7 a$	561 7	570 4
$\omega_8 a$	500 3	543 3
w ₉ a	290 8	311 7
$\omega_{I\theta} a$	276 5	291 6
$\omega_{II} a$	227 1	225 1
$\omega_{12} a$	158 59	171 60
$\omega_{I3} a$	120 37	130 40
$\omega_{14} a$	60 1	591
$\omega_{15} a$	44 11	19 13

	MP2/aug-cc-pvdz	MP2/aug-cc-pvtz
$\boldsymbol{\omega}_{I} a_{I}$	2763 3	2779 2
$\omega_2 a_1$	2293 1597	2260 1721
$\omega_3 a_1$	1197 4	1214 5
$\omega_4 a_1$	300 21	319 19
$\omega_5 a_1$	154 50	166 51
$\omega_6 a_1$	39 <1	37 <1
$\omega_7 a_2$	520 0	543 0
$\mathbf{\omega}_8 a_2$	153 <i>i</i> 0	155 <i>i</i> 0
$\omega_9 b_1$	532 4	556 2
$\boldsymbol{\omega}_{I\theta} \boldsymbol{b}_{I}$	63 13	58 11
$\boldsymbol{\omega}_{II} \boldsymbol{b}_2$	2760 7	2777 3
$\boldsymbol{\omega}_{12} \boldsymbol{b}_2$	2213 1380	2168 1553
$\boldsymbol{\omega}_{I3} \boldsymbol{b}_2$	1182 <1	1199 <1
$\omega_{14} b_2$	273 2	283 2
$\omega_{15} b_2$	125 44	135 48

C_{2v} symmetry, one maginary nequency (a_2	C_{2v}	symmetry,	one	imaginary	free	luency	$(a_2$
--	----------	-----------	-----	-----------	------	--------	--------

	$r(Cl^{-}H_b)$	$r(S-H_b)$	$r(S-H_t)$	$\theta(Cl-H_b-S)$	Ө (H-S-H)	$\theta(H_b-Cl-H_b)$	zpe	E_{MP2}	$E_{e/BSSE}$	$\Delta E_{e/BSSE}$	$\Delta E_{e/BSSE/Corr}$
pvdz	2.141	1.391	1.350	177.8	92.7	82.5	20.6	-1257.469196	-1257.465062	0.7	0.3
pvtz	2.100	1.383	1.336	177.8	92.5	83.2	20.7	-1257.639626	-1257.636697	0.8	0.4

	MP2/aug-cc-pvdz	MP2/aug-cc-pvtz
$\omega_l a'$	2764 5	2778 3
$\omega_2 a'$	2756 1	2771 <1
$\omega_3 a'$	2332 1443	2297 1608
ω ₄ a ′	2210 1353	2161 1466
$\omega_5 a'$	1203 4	1222 5
ω ₆ a ′	1183 <1	1201 <1
ω ₇ α′	299 6	321 5
ω ₈ a ′	293 16	309 16
ω ₉ a ′	157 58	171 61
ω ₁₀ a ′	119 34	128 37
ω11 α'	42 1	42 1
ω ₁₂ a "	533 2	558 1
ω ₁₃ a "	497 1	521 <1
ω ₁₄ a "	104 <1	105 <1
ω ₁₅ a "	135 <i>i</i> 21	139 <i>i</i> 19

 C_s symmetry, one imaginary frequency (a["])

	$r(ClH_b)$	$r(S-H_b)$	$r(S-H_t)$	$\theta(Cl-H_b-S)$	Ө (H-S-H)	zpe	E_{MP2}	$E_{e/BSSE}$	$\Delta E_{e/BSSE}$	$\Delta E_{e/BSSE/Corr}$
<i>pvdz</i>	2.178 <i>l</i>	1.386	1.350	175.0	92.4	20.7	-1257.469229	-1257.465010	0.8	0.5
	2.126 r	1.393	1.349	179.6	92.7					
pvtz	2.132 <i>l</i>	1.378	1.337	175.3	92.3	20.9	-1257.639696	-1257.636733	0.8	0.6
	2.082 r	1.386	1.336	179.2	92.5					

HSH...SH₂ Hbond angles 130.1° (apvdz)

29.9° (apvtz)

	MP2/aug-cc-pvdz	MP2/aug-cc-pvtz
$\boldsymbol{\omega}_{l} a_{l}$	2764 7	2781 3
$\omega_2 a_1$	2311 543	2278 442
$\omega_3 a_1$	1190 3	1206 5
$\omega_4 a_1$	278 4	293 5
$\omega_5 a_1$	125 16	131 12
$\omega_6 a_1$	9 2	8 2
$\omega_7 a_2$	520 0	548 0
$\omega_8 a_2$	36i 0	33 <i>i</i> 0
$\omega_9 b_1$	518 6	541 4
$\omega_{I\theta} b_I$	15 <i>i</i> 23	18 <i>i</i> 21
$\boldsymbol{\omega}_{II} \boldsymbol{b}_2$	2764 <1	2781 <1
$\omega_{12} b_2$	2250 2907	2204 3519
$\omega_{I3} b_2$	1185 6	1201 8
$\omega_{14} b_2$	269 13	283 9
$\omega_{15} b_2$	145 97	162 119

 $C_{2\nu}$ symmetry, two imaginary frequencies (a_2 and b_1)

	$r(ClH_b)$	$r(S-H_b)$	$r(S-H_t)$	$\theta(Cl-H_b-S)$	Ө (H-S-H)	$\theta(H_b-Cl-H_b)$	zpe	E_{MP2}	$E_{e/BSSE}$	$\Delta E_{e/BSSE}$	$\Delta E_{e/BSSE/Corr}$
pvdz	2.153	1.388	1.349	176.6	92.5	116.5	20.5	-1257.468413	-1257.464811	0.9	0.4
pvtz	2.107	1.381	1.336	176.9	92.3	124.6	20.6	-1257.638973	-1257.636283	1.1	0.6

	MP2/aug-cc-pvdz	MP2/aug-cc-pvtz
$\omega_l a$	2725 1	2741 1
$\omega_2 a$	2460 1128	2443 1243
$\omega_3 a$	1185 14	1200 14
ω ₄ a	496 <1	517 <1
$\omega_5 a$	332 <1	325 <1
$\omega_6 a$	285 7	291 6
$\omega_7 a$	162 45	171 46
$\omega_8 a$	76 2	751
W 9 <i>e</i>	2730 25	2745 30 (60)
w 10 <i>e</i>	2389 494	2360 560 (1120)
$\omega_{II} e$	1183 12	1199 11 (22)
$\omega_{I2} e$	500 13	522 12 (24)
w ₁₃ e	267 2	277 2 (4)
w 14 <i>e</i>	209 9	204 9 (18)
$\omega_{15} e$	115 18	119 19 (38)
w 16 <i>e</i>	591	58 1 (2)

Tetramer Structures: Cl⁻-(H₂S)₃

 C_3 symmetry, minimum

	$r(Cl-H_b)$	$r(S-H_b)$	$r(S-H_t)$	$\theta(Cl-H_b-S)$	Ө (H-S-H)	$\theta(H_b-Cl-H_b)$	zpe	E_{MP2}	$E_{e/BSSE}$	$\Delta E_{e/BSSE}$	∆E _{e/BSSE/Corr}	ΔH_{2}
pvdz	2.243	1.378	1.353	168.0	90.9	74.6	32.4	-1656.343825	-1656.336280	0.0	0.0	-9.2
pvtz	2.201	1.369	1.340	169.1	90.9	74.5	32.5	-1656.569665	-1656.564937	0.0	0.0	-10.0

 $\begin{array}{ll} HSH...SH_2 \ Hbond \ angle = & 138.8^{\circ} \ (apvdz) \\ & 137.8^{\circ} \ (apvtz) \end{array}$

	MP2/aug-cc-pvtz	MP2/aug-cc-pvdz
$\omega_l a'$	2754 1	2772 <1
$\omega_2 a'$	2746 3	2761 6
ω ₃ a ′	2469 574	2449 658
ω ₄ a ′	2300 795	2275 818
$\omega_5 a'$	1191 5	1207 6
ω ₆ a ′	1179 1	1197 2
ω ₇ a ′	472 3	492 2
ω ₈ a ′	277 10	290 8
ω ₉ a ′	252 7	268 7
ω ₁₀ a ′	194 5	192 5
ω ₁₁ a ′	153 40	163 39
ω ₁₂ a ′	102 8	106 9
ω ₁₃ a ′	57 1	561
ω ₁₄ a ′	11 <1	9 <1
ω ₁₅ a ″	2746 5	2761 8
ω ₁₆ a "	2425 1254	2396 1428
ω ₁₇ a "	1189 17	1205 16
ω ₁₈ a ″	543 9	569 8
ω ₁₉ a "	459 3	478 2
$\omega_{20} a''$	268 <1	278 <1
$\omega_{21} a''$	246 1	248 1
$\omega_{22} a''$	136 54	142 57
$\omega_{23} a''$	64 <1	64 <1
ω ₂₄ a ″	31 15	27 15

 C_s symmetry, minimum

	$r(ClH_b)$	$r(S-H_b)$	$r(S-H_t)$	$\theta(Cl-H_b-S)$	Ө (H-S-H)	$\theta(H_b-Cl-H_b)$	zpe	E_{MP2}	$E_{e/BSSE}$	$\Delta E_{e/BSSE}$	$\Delta E_{e/BSSE/Corr}$
pvdz	2.256 D	1.376	1.351	170.1	91.3	113.3 <i>D-D</i>	31.8	-1656.341390	-1656.334728	1.0	0.4
	2.171 A	1.386	1.351	174.4	92.0	73.6 D-A					
pvtz	2.216 D	1.366	1.338	171.1	91.3	113.4 <i>D-D</i>	32.0	-1656.567430	-1656.563058	1.2	0.7
	2.137 A	1.377	1.337	174.2	91.8	73.6 <i>D</i> -A					

D=*H*-bond donors, *A*=*H*-bond acceptor

 $\begin{array}{ll} \text{HSH}...\text{SH}_2 \text{ Hbond angle} = & 132.6^\circ \text{ (apvdz)} \\ & 131.4^\circ \text{ (apvtz)} \end{array}$

MP2/aug-cc-pvdz	MP2/aug-cc-pvdz
2756 4	2771 2
2736 16	2751 18
2727 18	2743 21
2477 955	2458 1076
2418 529	2390 593
2349 764	2319 818
1189 5	1206 3
1186 10	1202 11
1184 11	1200 11
520 9	524 8
491 9	512 8
461 7	488 6
298 7	294 7
278 5	284 8
266 9	280 5
259 2	266 1
191 6	183 6
161 45	170 46
137 12	137 13
116 19	120 20
113 15	117 15
70 2	69 2
58 1	55 <1
25 1	27 1
	MP2/aug-cc-pvdz 2756 4 2736 16 2727 18 2477 955 2418 529 2349 764 1189 5 1186 10 1184 11 520 9 491 9 461 7 298 7 278 5 266 9 259 2 191 6 161 45 137 12 116 19 113 15 70 2 58 1 25 1

~		• •
· · ·	aummotru	minimiim
	Symmetry.	IIIIIIIIIIIIIIIIIIII
- 1	,	

					<u>, , , , , , , , , , , , , , , , , , , </u>						
	$r(ClH_b)$	$r(S-H_b)$	$r(S-H_t)$	$\theta(Cl-H_b-S)$	Ө (H-S-H)	$\theta(H_b-Cl-H_b)$	zpe	E_{MP2}	$E_{e/BSSE}$	$\Delta E_{e/BSSE}$	$\Delta E_{e/BSSE/Corr}$
pvdz	2.258 <i>l</i>	1.375	1.352	167.9	91.0	74.9 <i>l-m</i>	32.1	-1656.341928	-1656.334790	0.9	0.6
	2.257 b	1.377	1.353	167.6	90.9	73.9 <i>m</i> - <i>r</i>					
	2.199 r	1.382	1.351	174.4	92.1	72.0 <i>r</i> - <i>l</i>					
pvtz	2.217 <i>l</i>	1.365	1.339	168.8	91.0	75.0 <i>l-m</i>	32.3	-1656.567840	-1656.563262	1.1	0.9
	2.212 b	1.368	1.340	168.6	90.8	73.8 <i>m</i> - <i>r</i>					
	2.161 r	1.373	1.337	175.5	92.0	71.7 <i>r-l</i>					

l=left, b=back, r=right

HSH...SH₂ Hbond angle = $139.3^{\circ} l-b$ (apvdz)

138.1° *l-b* (apvtz)

139.5° *b-r* (apvdz)

138.6° *b-r* (apvtz)

	MP2/aug-cc-pvdz	MP2/aug-cc-pvtz
$\omega_1 a'$	2765 0	2782 0
$\omega_2 a'$	2445 0	2422 0
$\omega_3 a'$	1187 0	1204 0
ω ₄ a ′	247 0	261 0
$\omega_5 a'$	99 0	107 0
$\omega_6 a''$	465 10	491 7
$\omega_7 a''$	7i 2	7 <i>i</i> 1
ω ₈ a "	54 <i>i</i> 31	54 <i>i</i> 29
ω ₉ e ′	2765 4	2782 1 (2)
ω ₁₀ e ′	2383 1871 (3742)	2349 2112 (4224)
ω ₁₁ e ′	1193 6 (12)	1209 8 (16)
ω ₁₂ e ′	252 16 (32)	266 14 (28)
ω ₁₃ e ′	138 59 (118)	149 64 (128)
$\omega_{14} e'$	7 < 1 (1)	3 <i>i</i> < 1 (1)
$\omega_{15} e^{\prime\prime}$	473 0	496 0
ω ₁₆ e "	26 <i>i</i> 0	27 <i>i</i> 0

 C_{3h} symmetry, six imaginary frequencies (2a'' + 2e' + 2e'')

	$r(Cl-H_b)$	$r(S-H_b)$	$r(S-H_t)$	$\theta(Cl-H_b-S)$	Ө (H-S-H)	$\theta(H_b-Cl-H_b)$	zpe	E_{MP2}	$E_{e/BSSE}$	$\Delta E_{e/BSSE}$	$\Delta E_{e/BSSE/Corr}$
pvdz	2.221	1.379	1.349	177.3	92.5	120.0	30.9	-1656.372481	-1656.332070	2.6	1.1
pvtz	2.174	1.370	1.336	177.6	92.3	120.0	31.1	-1656.563519	-1656.559811	3.2	1.8

	MP2/aug-cc-pvdz	MP2/aug-cc-pvdz
$\omega_1 a'$	2759 3	2777 1
$\omega_2 a'$	2704 81	2722 84
$\omega_3 a'$	2288 485	2269 522
$\omega_4 a'$	1180 6	1199 8
$\omega_5 a'$	1164 3	1169 2
ω ₆ a ′	545 5	561 5
$\omega_7 a'$	339 5	339 4
ω ₈ a ′	265 14	285 15
ω ₉ a '	131 17	142 16
ω ₁₀ a ′	113 27	118 30
ω ₁₁ a ′	77 <1	74 <1
$\omega_{12} a'$	26 2	33 1
ω ₁₃ a ′	11 1	71
ω ₁₄ a ″	2759 1	2777 1
$\omega_{15} a''$	2720 137	2773 113
ω ₁₆ a "	2205 2759	2179 2908
ω ₁₇ a "	1184 <1	1200 <1
ω ₁₈ a "	544 21	568 19
ω ₁₉ a "	315 <1	300 <1
$\omega_{20} a''$	269 2	285 1
$\omega_{21} a''$	157 105	168 109
$\omega_{22} a''$	98 1	90 <1
$\omega_{23} a''$	72 1	56 <1
$\omega_{24} a''$	87 <i>i</i> 19	147 <i>i</i> 17

 C_s symmetry, one imaginary frequency (a")

H₂Ss bound to anion

	$r(ClH_b)$	$r(S-H_b)$	$r(S-H_t)$	θ (Cl-H _b -S)	Ө (H-S-H)	$\theta(H_b-Cl-H_b)$	zpe	E_{MP2}	$E_{e/BSSE}$	$\Delta E_{e/BSSE}$	$\Delta E_{e/BSSE/Corr}$
pvdz	2.116	1.391	1.350	175.6	92.5	131.5	31.4	-1656.337462	-1656.330919	3.4	2.4
<i>pvtz</i>	2.085	1.382	1.337	175.8	92.3	130.4	31.5	-1656.563325	-1656.559170	3.6	2.6

Satellite H₂S

	$r(SH_b)$	$r(S-H_b)$	Ө (H-S-H)	HSHSH ₂ Hbond angles
pvdz	2.749	1.354	169.6	169.6° (apydz)
pvtz.	2.779	1.341	163.4	163.1° (apvtz)
		·		103.4 (apviz)

	MP2/aug-cc-pvdz	MP2/aug-cc-pvdz
$\omega_l a'$	2767 4	2780 3
$\omega_2 a'$	2762 3	2775 2
$\omega_3 a'$	2761 2	2774 1
ω ₄ a ′	2710 98	2714 118
$\omega_5 a'$	2324 1411	2289 1577
$\omega_6 a'$	2080 1822	2031 1918
ω7 α'	1206 11	1224 13
ω ₈ α '	1192 7	1212 8
ω ₉ a '	1175 1	1192 <1
ω ₁₀ α'	314 8	340 8
ω ₁₁ a '	306 17	326 16
ω ₁₂ α'	171 3	189 2
ω ₁₃ a '	170 67	184 72
ω ₁₄ α'	123 38	132 39
ω ₁₅ α'	78 8	80 7
ω ₁₆ a '	49 3	52 3
ω ₁₇ α'	36 <1	35 <1
ω ₁₈ a "	544 2	574 1
ω ₁₉ a "	486 1	511 1
$\omega_{20} a''$	229 2	243 2
$\omega_{21} a''$	91 4	91 2
$\omega_{22} a''$	16 4	19 4
$\omega_{23} a''$	175i 19	154 <i>i</i> 17
$\omega_{24} a''$	205 <i>i</i> 8	213 <i>i</i> 7

\sim			•	•	C	•	10 18	
(·	cummotru	two	11000	T100TV	tran	111010100	()a''	۱.
L . c	SVIIIIICU V.	LWU	IIIIas	211111111	IICU	IUCIICIES	(Δu)	,
	~ / / / /		/				<pre>(</pre>	

	$r(ClH_b)$	$r(S-H_b)$	$r(S-H_t)$	$\theta(Cl-H_b-S)$	Ө (H-S-H)	$\theta(H_b-Cl-H_b)$	zpe	E_{MP2}	$E_{e/BSSE}$	$\Delta E_{e/BSSE}$	$\Delta E_{e/BSSE/Corr}$
pvdz	2.174 <i>t</i>	1.386	1.350	172.8	91.7	73.8	30.9	-1656.330581	-1656.324331	7.5	6.0
	2.057 b	1.403	1.348	178.1	93.9						
pvtz	2.130 <i>t</i>	1.378	1.337	172.8	91.6	73.5	31.1	-1656.556559	-1656.552479	7.8	6.4
	2.019 <i>b</i>	1.397	1.336	178.0	93.7						

t=*top*, *b*=*bottom*

Satellite H₂S

	$r(SH_b)$	$r(S-H_b)$	Ө (H-S-H)	HSHSH ₂ Hbond angles
pvdz	3.398 <i>l</i>	1.350	92.3	140.3° s-t (apydz)
	2.665 b	1.354		120.2° s t (aputz)
pvtz	3.252 <i>l</i>	1.337	92.2	139.2 s-i (apvtz)
-	2.639 b	1.343		168.7° <i>s-b</i> (apvdz)
	•	•	•	169.4° <i>s-b</i> (apvtz)

Pentamer Structures: Cl⁻-(H₂S)₄

		•	•
· / `-	aummatru	min	imiim
• • /	SVIIIIIICU V.		

	$r(Cl-H_b)$	$r(S-H_b)$	$r(S-H_t)$	$\theta(Cl-H_b-S)$	Ө (H-S-H)	$\theta(H_b-Cl-H_b)$	zpe	E_{MP2}	$E_{e/BSSE}$	$\Delta E_{e/BSSE}$	$\Delta E_{e/BSSE/Corr}$	$\Delta H_3 A^{295K}$
pvdz	2.300 <i>l</i>	1.370	1.352	168.5	91.2	73.2 <i>l-f</i>	43.3	-2055.213566	-2055.203332	0.0	0.0	-7.4
	2.286 f	1.375	1.355	165.9	90.8	73.8 <i>f-b</i>						Checked
	2.319 b	1.371	1.354	165.8	90.9	73.9 <i>b-r</i>						
	2.284 r	1.373	1.353	168.5	91.1	135.5 <i>r-l</i>						
	$\frac{l=left}{l=left}, f=front, b=back, r=right$											

HSH...SH₂ Hbond angle = $138.9^{\circ} l \cdot f$ 143.6° $f \cdot b$ 139.3° $b \cdot r$ 138.6° $r \cdot f$

	MP2/aug-cc-pvdz
$\omega_1 a$	2739 10
$\omega_2 a$	2732 18
$\omega_3 a$	2725 15
$\omega_4 a$	2708 30
$\omega_5 a$	2542 566
$\omega_6 a$	2494 500
$\omega_7 a$	2469 688
$\omega_8 a$	2447 301
ω 9 a	1188 13
$\omega_{10} a$	1187 7
$\omega_{11} a$	1186 11
$\omega_{12} a$	1182 4
$\omega_{13} a$	502 14
$\omega_{14} a$	473 6
$\omega_{15} a$	467 8
$\omega_{16} a$	431 8
$\omega_{17} a$	360 3
$\omega_{18} a$	276 7
$\omega_{19} a$	263 <1
$\omega_{20} a$	254 6
$\omega_{21} a$	249 6
$\omega_{22} a$	237 6
$\omega_{23} a$	217 12
$\omega_{24} a$	181 8
$\omega_{25} a$	155 31
$\omega_{26} a$	138 39
$\omega_{27} a$	109 11
$\omega_{28} a$	92 <1
$\omega_{29} a$	79 2
$\omega_{30} a$	70 1
ω ₃₁ a	61 1
$\omega_{32} a$	48 1
ω ₃₃ a	24 1

		80		
(0	20	
	0	8		C₄

	-
	MP2/aug-cc-pvdz
$\omega_1 a$	2727 1
$\omega_2 a$	2535 625
$\omega_3 a$	1181 12
$\omega_4 a$	473 1
$\omega_5 a$	344 5
$\omega_6 a$	267 11
ω ₇ <i>a</i>	151 25
$\omega_8 a$	63 2
ω ₉ b	2733 0
$\omega_{10} b$	2467 0
$\omega_{11} b$	1197 0
$\omega_{12} b$	489 0
$\omega_{13} b$	264 0
$\omega_{14} b$	163 0
$\omega_{15} b$	90 0
$\omega_{16} b$	72 0
$\omega_{17} b$	17 0
$\omega_{18} e$	2730 44 (88)
ω ₁₉ e	2473 720 (1440)
ω ₂₀ e	1188 13 (26)
ω ₂₁ e	477 19 (38)
ω ₂₂ e	262 1 (2)
ω ₂₃ e	255 7 (14)
ω ₂₄ e	128 29 (58)
ω ₂₅ <i>e</i>	69 2 (4)

			•	С	4 symmetry	y, minimum					
	$r(Cl-H_b)$	$r(S-H_b)$	$r(S-H_t)$	$\theta(Cl-H_b-S)$	Ө (H-S-H)	$\theta(H_b-Cl-H_b)$	zpe	E_{MP2}	$E_{e/BSSE}$	$\Delta E_{e/BSSE}$	$\Delta E_{e/BSSE/Corr}$
pvdz	2.298	1.372	1.353	168.1	91.0	70.5	43.5	-2055.213351	-2055.203272	< 0.1	0.2

 $HSH...SH_2$ Hbond angle = 139.0°

(cummotry min	imiim

	$r(Cl-H_b)$	$r(S-H_b)$	$r(S-H_t)$	$\theta(Cl-H_b-S)$	Ө (H-S-H)	$\theta(H_b-Cl-H_b)$	zpe	E_{MP2}	$E_{e/BSSE}$	$\Delta E_{e/BSSE}$	$\Delta E_{e/BSSE/Corr}$
pvdz	2.242 <i>l</i>	1.376	1.350	174.0	92.1	73.2 <i>l-b</i>	43.1	-2055.211775	-2055.201920	0.9	0.7
	2.333 b	1.370	1.353	165.3	91.0	73.9 <i>b-t</i>					
	2.295 t	1.372	1.354	165.9	90.9	73.1 <i>t-r</i>					
	2.309 r	1.369	1.352	167.9	91.1	133.3 <i>r-l</i>					

HSH...SH₂ Hbond angle = $140.8^{\circ} b-l$ 143.7° t-b139.9° r-t

	MP2/aug-cc-pvdz
$\omega_1 a$	2757 3
$\omega_2 a$	2736 15
$\omega_3 a$	2726 22
$\omega_4 a$	2717 25
$\omega_5 a$	2550 582
$\omega_6 a$	2506 438
$\omega_7 a$	2483 349
$\omega_8 a$	2425 813
$\omega_9 a$	1191 6
$\omega_{10} a$	1188 10
$\omega_{11} a$	1187 7
$\omega_{12} a$	1184 7
$\omega_{13} a$	493 8
$\omega_{14} a$	472 11
$\omega_{15} a$	460 7
$\omega_{16} a$	425 9
$\omega_{17} a$	332 8
$\omega_{18} a$	266 7
$\omega_{19} a$	258 3
$\omega_{20} a$	255 5
$\omega_{21} a$	243 3
$\omega_{22} a$	234 5
$\omega_{23} a$	187 8
$\omega_{24} a$	153 30
$\omega_{25} a$	139 36
$\omega_{26} a$	133 17
$\omega_{27} a$	109 10
$\omega_{28} a$	92 <1
$\omega_{29} a$	75 2
$\omega_{30} a$	65 1
$\omega_{31} a$	57 <1
$\omega_{32} a$	27 <1
$\omega_{33} a$	20 1

	9	-0
g		~

<i>a</i>	
('s symmetry	minimiim
Croynmetry,	mmmunu

	$r(Cl-H_b)$	$r(S-H_b)$	$r(S-H_t)$	$\theta(Cl-H_b-S)$	θ(H-S-H)	$\theta(H_b-Cl-H_b)$	zpe	E_{MP2}	$E_{e/BSSE}$	$\Delta E_{e/BSSE}$	$\Delta E_{e/BSSE/Corr}$
pvdz	2.311 <i>l</i>	1.369	1.352	168.2	91.3	72.1 <i>l-f</i>	43.1	-2055.211473	-2055.201698	1.0	0.8
	2.230 <i>f</i>	1.378	1.351	178.4	92.1	71.8 <i>f-r</i>					
	2.299 r	1.372	1.353	168.1	91.1	74.8 <i>r</i> - <i>t</i>					
	2.331 t	1.368	1.353	164.4	91.0	69.8 <i>t-l</i>					

HSH...SH₂ Hbond angle = $138.1^{\circ} l \cdot f$ 140.8° $t \cdot r$ 138.7° $r \cdot f$

	MP2/aug-cc-pvdz
$\omega_1 a$	2752 4
$\omega_2 a$	2741 9
$\omega_3 a$	2733 20
$\omega_4 a$	2730 8
$\omega_5 a$	2559 521
$\omega_6 a$	2516 309
$\omega_7 a$	2484 798
$\omega_8 a$	2402 508
w9 a	1193 2
$\omega_{10} a$	1190 13
$\omega_{11} a$	1187 8
$\omega_{12} a$	1183 1
$\omega_{13} a$	524 11
$\omega_{14} a$	461 9
$\omega_{15} a$	434 2
ω ₁₆ a	417 13
ω ₁₇ a	310 7
ω ₁₈ a	265 17
$\omega_{19} a$	260 7
$\omega_{20} a$	253 3
$\omega_{21} a$	243 1
$\omega_{22} a$	216 6
$\omega_{23} a$	207 13
$\omega_{24} a$	156 34
$\omega_{25} a$	140 3
$\omega_{26} a$	136 37
$\omega_{27} a$	107 9
$\omega_{28} a$	89 1
$\omega_{29} a$	72 2
$\omega_{30} a$	63 <1
$\omega_{31} a$	52 1
$\omega_{32} a$	41 1
$\omega_{33} a$	21 1

Y		• • •	•	c ·		`	1 .		`	•	
·	oummatru	$\Delta 1 \alpha hf 1$	magnagy	traduancu	00 1	la l	h	h	10	10 1	
AL	SVIIIIIICU V.		111ay 111ay	псиценск	CN 1.	ΔU_{11} . I	la.	111. 4	Ka. 1	$\Delta \mathbf{e}_{m}$	
411					•~ \.	$-\circ u$, \cdot	· 29	- u, -		-~ u/	

	$r(Cl-H_b)$	$r(S-H_b)$	$r(S-H_t)$	$\theta(Cl-H_b-S)$	Ө (H-S-H)	$\theta(H_b-Cl-H_b)$	zpe	E_{MP2}	$E_{e/BSSE}$	$\Delta E_{e/BSSE}$	$\Delta E_{e/BSSE/Corr}$
pvdz	2.265	1.373	1.350	176.5	92.4	90.0	41.2	-2055.204480	-2055.197709	3.5	1.4

MP2/aug-cc-pvdz
2763 0
2523 0
1186 0
226 0
95 0
421 12
51 <i>i</i> 1
103 <i>i</i> 40
2763 0
2463 0
1199 0
232 0
86 0
16 <i>i</i> 0
401 0
52 0
10 <i>i</i> 0
434 0
62 <i>i</i> 0
2763 4 (8)
2458 1851 (3702)
1188 3 (6)
220 28 (56)
146 60 (120)
17 <i>i</i> <1 (1)

 $C_{2\nu}$ symmetry, three imaginary frequencies $(2a_2 + b_1)$

	$r(Cl-H_b)$	$r(S-H_b)$	$r(S-H_t)$	$\theta(Cl-H_b-S)$	Ө (H-S-H)	$\theta(H_b-Cl-H_b)$	zpe	E_{MP2}	$E_{e/BSSE}$	$\Delta E_{e/BSSE}$	$\Delta E_{e/BSSE/Corr}$
pvdz	2.304 t	1.370	1.350	174.7	92.5	142.6 <i>t</i> - <i>t</i>	41.8	-2055.205910	-2055.197630	3.6	2.1
	2.243 b	1.376	1.349	178.4	92.9	70.6 <i>t-b</i>					
						76.2 <i>b-b</i>					

t=*top*, *b*=*bottom*.

HSH...SH₂ Hbond angle = 132.0° (apvdz)

	MP2/aug-cc-pvdz
$\omega_1 a_1$	2767 4
$\omega_2 a_1$	2759 1
$\omega_3 a_1$	2536 1
$\omega_4 a_1$	2438 1105
$\omega_5 a_1$	1211 1
$\omega_6 a_1$	1193 <1
$\omega_7 a_1$	284 40
$\omega_8 a_1$	263 4
$\omega_9 a_1$	139 34
$\omega_{10} a_1$	95 2
$\omega_{11} a_1$	53 <1
$\omega_{12} a_1$	29 1
$\omega_{13} a_2$	442 0
$\omega_{14} a_2$	395 0
$\omega_{15} a_2$	59 0
$\omega_{16} a_2$	28 <i>i</i> 0
$\omega_{17} a_2$	196 <i>i</i> 0
$\boldsymbol{\omega}_{18} \boldsymbol{b}_{1}$	451 4
$\omega_{19} b_1$	407 4
$\omega_{2\theta} b_1$	107 1
$\boldsymbol{\omega}_{21} \boldsymbol{b}_1$	31
$\boldsymbol{\omega}_{22} \boldsymbol{b}_1$	137 <i>i</i> 36
$\boldsymbol{\omega}_{23} \boldsymbol{b}_2$	2764 6
$\omega_{24} b_2$	2759 <1
$\omega_{25} b_2$	2496 1489
$\omega_{26} b_2$	2415 677
$\omega_{27} b_2$	1204 4
$\omega_{28} b_2$	1185 < 1
$\omega_{29} b_2$	261 15
$\omega_{3\theta} b_2$	255 <1
$\omega_{31} b_2$	157 91
$\omega_{32} b_2$	85 <1
$\omega_{33} b_2$	49 1