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Fig. S1. Curves calculated for the solution of eqn (7) by the deterministic approach for second-order
autocatalysis.
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Table S1: Wilcoxon rank sum test for the random generation of enantiomers in the Soai-reaction.®®

XR rank XR rank XR rank
0.01 1 0.115 36.5 0.77 103.5
0.035 35 0.12 395 0.775 105
0.035 35 0.125 415 0.785 106.5
0.04 7 0.13 43 0.79 108
0.04 7 0.14 45.5 0.8 109
0.04 7 0.16 49.5 0.805 110
0.04 7 0.17 55.5 0.83 1135
0.045 105 0.175 58 0.83 1135
0.045 105 0.215 62.5 0.83 1135
0.05 13 0.24 67 0.835 117
0.05 13 0.27 69 0.835 117
0.05 13 0.31 71 0.835 117
0.055 15 0.315 72 0.84 1195
0.06 175 0.37 74.5 0.855 1215
0.06 175 0.44 80.5 0.855 1215
0.06 175 0.445 82 0.86 1235
0.06 175 0.455 83 0.865 125
0.065 205 0.52 85 0.875 1275
0.075 225 0.56 88.5 0.88 1295
0.08 25 0.565 90 0.885 1325
0.08 25 0.57 91 0.9 136.5
0.085 27 0.61 92 0.915 141
0.09 305 0.615 93 0.915 141
0.09 305 0.63 94.5 0.92 144

0.1 325 0.68 96 0.925 146.5
0.11 34 0.725 99 0.935 1485
0.115 36.5 0.75 101 0.96 162
0.115 365 0.77 103.5 0.97 167

Sum of ranks: > rank = 6086
Wonos = 3 rank — 2282 _ 2516 M(W) = 84x84/2 = 3528
DY) = \/84x84x(84+84+1) 315
12
IWS{MD(_V%(W)I ~3.21 This is larger than the 95% limit (1.96), consequently, the asymmetry in the

distribution is significant.
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Mathematical proofs for equations appearing in the manuscript

Equation (1):

The Eyring equation gives the rate constant of a reaction as:

k= kBTTe—AGi/RT (S1)

Applying this equation twice to calculate the ratio of the rat constants (kr/ks) of the two reactions
leading to enantiomers R and S:

:0.5+g :eAExpV/RT (S2)

An approximation for the exponential function from the Taylor series is given by:
APV IRT 0 L AE by / RT (S3)
Using egn (S3) to modify eqn (S2) gives:

eAEiPV/RT—l N 1+AE¢PV/RT—1 _AEipV

~ = S4
Z(eAE*pv/RT +1) 201+ AE*py /RT +1) 4RT (54)

E =
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Equation (7):

Using the new variables and parameters defined in the text transforms the simultaneous differential
equations in eqn (5) as follows:

db
“=x,a+x,a(r® +s°)

dt

dr £

—=(05+¢)x,a+xK_.ar (S5)
dt

s _ (05-¢)x,a+ K as®

dt

The definition of 4 can be transformed into :
A=([BRr] - [Bs])VNa=r—s (S6)

Differentiating egn (S6) gives:

£ N
d—A:ﬂ—§:2£Kua+Kca(r§ —s5°)=2¢K,a+K,a b+a -K.a b-A (S7)
dt dt dt 2 2
From eqn (S5)
¢ Y
@:Kuamca[bﬂj +Kca[b_ﬂ (s8)
dt 2

According to the rules of differentiating (http://mathworld.wolfram.com/Derivative.html), the
derivative on the left-hand side of eqn (7) can be calculated as:

4 _dd [db

= S9
db dt/ dt (59)

Applying eqgn (S9) on eqn (S7) and egn (S8) gives eqn (7).
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Equation (8):

Any given (r,s) state can only arise from either one of the (r,s+1) and (r,s+1) states. The probability of
state (r,s) being followed by state (r,s+1) is (i.e. a Bs molecule forms next):

k,(05—¢)a+x as* _ (05—¢) +as®

K, (05—¢)a+K.as +x,005+e)a+x.ar’ 1+a(s+rd)

(S10)

Similarly, the probability of (r,s) being followed by state (r+1,s) is (i.e. a Bg molecule forms next):

k,(05—¢)a+ Kk, as® 3 (05+¢)+ar®
k,(05—¢)a+x,as® +x,(05+&)a+x,ar® 1+a(s® +r°)

(S11)

These formulas are general, they can be used for every state. State (r,s) can only be formed from in
two ways: from state (»—1,s) through the formation of a Bz molecule and from state (r,s—1) through the
formation of a Bs molecule. Therefore, the probability of the system ever going through state (r,s) can
be calculated from probabilities O(—1,s) and O(r,s—1):

_ (05+¢)+a(r-1)°

(05-¢)+a(s—1)°
+
1+ af(r—1)° +s°}

() 1+ofre +(s-1)°}

O(r—1y5)

O(r.s-1) (8)
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Equation (9):

Mathematical induction will be used to prove the formula. The first few values of Q can be calculated
using eqn (8):

0(0,0)=1
0(1,0)=05+¢ (S12)
0(0,1)=05-¢

It is seen that eqn (9) is true for » = 1 and s =1. If the formula is already proved for » = £, Q(%,0) can
be given as:

1 T4
0@k ,0) = HM (S13)

i=0 1+ 0[1'ég

O(k+1,0) can be calculated using egn (8). Since s = 0, the second additive term in the eqn (8) can be
disregarded.

(05+¢) + ak® 05+ ¢+ ai®

1+ ofke +0°}

_ (05+¢)+ak® k205+e+ai

¢ k
O(k,0) = =11 (S14)

k+10) =
o ) 1+ ak® i l+ai® 0 l+ai®

Therefore, the first part of eqn (9) is true for all positive integers. An entirely analogous way of
thought proves the second part of egn (9).
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Equations (12) and (13):

The first parts of eqn (12) and eqn (13) give the definitions of R(2k+1) and R(2k+2).
Using eqgn (8) in the defining part of egn (13) gives:

Rk +2) = f(Q(2k+2-i,i)-Q(i,2k+2-i))=

i=0

k((05+¢&)+a(k+1-i)° oy (05—¢)+a(i-1)¢ e

;0[1+oc{(2k+1—i)‘f+if}Q(2k+1 ’)+1+a{(2k+2—i)f+(,-_1)4}Q(2k+2 ' DJ
_3 (05+¢)+a(i-D)* . 0, 05-)+a@k+1-)F o )
f=0[1+a{(i—1)§+(2k+2—i)§}Q( LAk )+1+a{i‘f+(2k+1_,~):}Q(’2k+1 )J—

=§((0.5+e)+a(2k+1—i)5

k1 (05—-¢) +ai®
1+ o{(2k +1-i)* +i%}

0(2k +1—i,i)J+ 2 1+ a{(2k +1-i)° +i°}

i=0

02k +1—1i, i)J

i=0

k 1[ (05+¢)+ai®

Z 1+odi€ +(2k+1-1)¢}

, ) E((05-¢)+a(k+1-i)¢
2k +1—-i) |-
Q2K+ Z)] Z(1+oc{if+(2k+1-i)@‘}

i=0

0(i 2k +l—i)] =

(05+¢)+a(k+1)°
1+of(k+1)° +k°}

(05—¢)+a(k+1)°
1+ofk® +(k+1)*}

:I§Q(2k+l—i,i)+ Q(k+l,k)—k§Q(i,2k+1—i)— Ok, k+1) =
i=0 i=0

(S15)

s i A0l el (05-g)+ak (,  (05+&)+ak® _
_EJ(Q(Zk+1 1)~ 0(i,2k +1 ))+(1 1+a{(k+l)§+k§}JQ(k+1,k) (1 l+a{(k+1)§+k§}jg(k,k+1)

e

(05—¢)+ak® Ok +1.4)+ (05+¢)+ak®

= > (0(2k +1~i,i)~0(i 2k +1—i))—1+0({(k+1)§ ey L of(h 2D 155

1

O(k, k+1)

Il
o

It will be shown that the sum of the second and third terms in the last line of eqn (S15) is exactly 0.

The formation of exactly one B or Bs molecule will be called an R or S step, respectively. A path to a
state (r,s) is defined as one particular series steps resulting in the final formation of state (r,s). A path
to a state (r,s) therefore contains exactly » R steps and exactly s S steps.

State (k+1,k) can be formed in ® different paths where

o- (Zkl: 1) (S16)

A path is represented by a (2k+2)-membered series m, where m; gives the number of R step after step i.
Obviously, mg = 0, my+1 = k+1 and m; < m;+1. The probability of one path is given by:

2k N

=01+ am,;” +a(i-m,)*

momimp - mypyl

(S17)

where
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N=(05+s+am*) if m, >m
N=(05-c+a(i-m)* if m,=m,

1

Out of (2k+1) overall steps, there are (k+1) R steps and & S steps. Therefore

2k k-1
I = 05+ +ak®)[[(0.5+ &+ ai€)(0.5- & + )]
i=0 i=0

A new parameter is introduced next:

SR R S | P

momyma -+ -m . - i
TR 01+ am,® +a(z—m[)§\ A l+am® +ai-m)*

Using this new parameter in calculating Q(k+1,k) gives:

Q(k +1, k) = Z Pm0m1m2"'m2k+l -

all ® paths

k-1
= Y (05+&+ak®)[](0.5+¢&+0ai®)0.5-¢+ai®)R =

1 momymy - m g1
all ® paths i=0

k-1
—(05+¢ +akf)g[(o.5+ e+ ai)05-c+a)x X Rynm

all ® paths

The very same line of reasoning for symmetric state (k,k+1) gives:

k-1
O,k +1) = (05— ¢ + ak‘f)g (05+&+ai¥)05-c+af)x ¥ R

all © paths
Dividing eqgn (S22) with egn (S21) gives:

(05-¢)+ak® _ O(kk+1)
(05+¢&)+ak® O(k+1k)

(S18)

(S19)

(S20)

(S21)

(S22)

(S23)

Rearranging egn (S23) shows that the second and third terms in the last line of egn (S15) is exactly 0.

Eqn (S15) is therefore transformed into the following formula:
R(2k+2) = f (0(2k +1-1,i)— Q(i, 2k +1—i)) = R(2k +1)

i=0

This proves the non-defining part of eqn (13).

S9
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The non-defining part of egn (12) will be proved through a similar series of algebraic steps. First,

using eqn (8) in the defining part of eqn (12) gives:
R(2k +1) = f(g(zkﬂ—i,i) ~Q(i,2k +1-1))=
i=0

_ & (05+¢6) + a(2k - i)* iy (05-¢) +a(i-1)° i
_i:zo 1+ af(2k +1- l)§+z§}Q(2k ,Z)Jr1+05{(2/7c+1—i)§+(i—1)‘5}Q(2kJr1 g 1)]

k
_§J 1+ (i -1)° + 2k +1-0)°} 1+ ofi® + (2k —i)°}

k[ (05+¢) + a2k —i)* iy ki (05—¢) + ai® iy
“Al ety iy O ’Z)j+z[1+a{(zk—i)<f+i<f}Q(2k ’Z)j

i=0

kz—:l
i\ 1+ ofi® + (2k —

[ (05+2) + a(i—1)° 0612k +1-1) + (0.5—8)+a(2k—.2§ Q(i,2k—i)j=

(05+8)+az op | &[5 ra@k-)T o )
B 0(i.2k )J Z(1+a{i5+(2k_i)§}Q(,2k )J

i=0

-1 (05+8)+ak o _l,_(o.5—g)+ak¢ _
; o@k- + afk* + ki}Q(k’k) 50020 1+ ofk? +k4}Q(k’k) (525)

% 2¢ 2¢0(k, k)
2% — 2k — k,k)=R(2k k,k)=R(2k —
( ( i) =00 l)) 1+ 20k® Ok, k) = R( )+1+ 20tk ¢ O(k.k) = R( D+ 1+ 2ak®

M»

0

This gives a recursive method to calculate R(2k+1) values. As R(1) = 2¢and Q(0,0) = 1, the recursive
definition can be rewritten as

Rk +1) = 252 0(.1) (S26)
i=0l '|‘26¥lé't

This is exactly the non-defining part of egn (12).
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Equation (14):

The first part of the equation gives the definition of E(2k+1). The second part is proved by the
following trivial rearrangements:

k 2k +1-2i

EQk+1)=Y ) (02k +1-1i,i)+ Q(i,2k +1-1i)) =
i=0

= ﬁ“@_ 2i j(Q(Zk +1—14,0) + O(i,2k +1—i))=

i=0 2k+1
(S27)
:z(Q(2k+1—i,i)+Q(i,2k+1—i))—f 2 (0Qk +1—-1,i) + 0(i,2k +1-i))=
-0 22k +1
2kl N &2 .. . .
= Z(:)Q(Zk+l—z,z)—§2k+1(Q(2k+1—z,z)+Q(z,2k+l—z)):

In the first term of this equation, the sum involves all the states where the sum of the number of B and
Bs molecules is exactly 2k+1. Evidently, the system must go through exactly on of these states,

therefore the the sum is 1.
2k+1
> 02k +1-1i,i)=1 (S28)
i=0

A combination of eqn (S27) and eqn S(28) gives the non-defining part of eqn (14).
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Equation (19):

Eqn( 7) takes a much simpler for first-order autocatalysis (& = 1)

d_A _ 2¢ +aA (S29)
db 1+ab

After separation of variables and integration:
1 1
—In(2e + aA) = —In(1+ ab) + D (S30)
(04 (04

where D is an integration constant depending on the initial conditions. Initially, »=0and A4=0. The
value of D is therefore In(2¢)/ . Substituting this value into the egn (S30):

26 + aA=2&1 + ab) (S31)

Eqgn (19) follows from a simple rearrangement of eqn (S31).

S12



Supplementary data for Physical Chemistry Chemical Physics
This journal is © The Owner Societies 2007

Equation (20):

By simple calculation:

XR:zzr—s+r+s:A+b:25b+b20‘5+8 (S32)
b b 2b 2b
Similarly, using the definition of ee gives:
ce= | Al b=2eb/b=2¢ (S33)
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Equation (21):

Special cases » = 0 and s = 0 have already been dealt with in eqn (9).
Mathematical induction will be used to show that the equation is correct. The first few values of QO(r,s)
can be calculated from the definition and the recursive formula given in egn (8)

0(0,00=1

0(1,00=05+¢

0(0,1)=05- ¢
_(05+¢&) (05+¢&)+a

0(2,0) = 1 Lo (S34)
_ ,(05+¢) (05-¢)

o) =2
_(05-¢) (05-¢)+a

0(20) =" 1+a

It is seen that eqn (21) is correct for all these cases. If eqn (21) is already proved for Q(r—1,s) and
O(r,s—1), recursive formula eqgn (8) can be transformed as follows:

ﬁ(0.5+6 +0£i)i:[l(0.5—8+0{i)

_05+e)+al(r=1(r+s-1)i0 i=0
or.s) 1+ o{r—-1+s} ( r—1 ) rﬁz(lJrai)
i=0
r—1 . s—2 .
+(0-5—8)+06(S—1)(r+s—1)R(O'5+g+m)g(0'5_8+m) i
1+afr+(s-1)} r rﬁ2(1+0!i)
i=0
r=1 s—1 r=1 s—1
[1(0.5+&+ai)][](0.5-¢ + i) [1(0.5+&+ai)][](0.5-¢ + i)
_(r+s-1)i-0 i=0 r+s—13i=o i=0 _
N (g -
[T+ ) [1Q+ )
i=0 i=0

r-1 s—1
[1(0.5+&+a)[](0.5- ¢+ x)
i=0

_J(r+s-1 r+s—1\| i= i=0 _
_{( r—1 j+( 7 )} r+s—1 B

[TA+ o)
i=0

r-1 s—1 (835)
[1(0.5+&+a)][](0.5-¢+ )
_ (r + S) i=0 i=0
4 r+s-1

[T+ a)

i=0
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Therefore, eqn (21) is true for all positive integers.
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Equation (22):

Mathematical induction will be used to show that the equation is correct.
xx (1) =0x0(01) +1x 0(1,0) =05+ ¢ (S36)

It is seen that eqn (22) is correct for 5 = 1. If eqn (22) is already proved for %, defining egn (10) and
the recursive formula in egn (8) can be transformed as follows:

k+1

o (k+1) = Z;Q(l k+1—i) =

e o Bt .
ey B g 050 a0,
:ﬁé(iﬂ)g(i’k—i)(osli‘zg o 1,ZOZQ(Z Lo i)jc(k_l)

- ﬁgoig(i,k —i)+ ﬁéQ(i,k ~i) —(0‘511‘2; @
3 g 5 3 b5

_k05+2)  05+s  ak(05+s) _ (537)

k+1 (k+D)(Q+ak) (kK+1)(1+ak)

k(1+ ak) +1+ ak
(k+1)Q+ ak)

(0.5+¢) :(O.5+g)w20.5+5
k+1

Therefore, eqn (22) is true for all positive integers.
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Equation (23):

Mathematical induction will be used to show that the equation is correct.

i=0

o) = Ji(iQ@Lﬁﬂégﬁn:mef—w5+az=¢m5+mm5—@=

(S38)

Tia

=\/(o.5+g)(o.z=,—g)1l+
(04

It is seen that eqn (23) is correct for » = 1. If eqn (23) is already proved for %, defining egn (11) and
the recursive formula in egn (8) can be transformed as follows:

k1 42 -
o(k+1) :\/gj((k+1)2 Q(i,k+1—i)j—xR (k+1) =

2 (05+¢&)+a(i-1) (05—¢)+a(k—i) B ,
\/EJ[(k+1)2L+a{i—1+k+1—i}Q( IR Wy w ’)D (05+¢)" =

1 (05+)+ali—1) NCEDETICED ; ,
(k+1)\/21 O(-Lk+1-i) 2 z 20k - D (4 05+2)? -
(05+€)+(Zl k (05 3)+(Z(k ) 2 2 _
i 1)\/Z(z+1) Ok =) o v 01k i) 2D ()2 0544 =
i 1)\/21 06,k z)+2(21+1)Q(zk—)W—(k+l)2(0.5+5)2=
(S39)
\/Zz 06 k—i)+ (05”)2(2 D0k -1)+ 1 &S i1k —1) - (k+1)2(0.5+ £)?
(k+1) 1+« +ak 5

Evaluating the expression under the square root separately gives:
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k k k
3200k — 1) + O3 S 0 e 0@k — 1) + —F— S 120 DO k ) — (k +1)2(0.5+ £)? =
i=0 1+aok 5 1+ ok 5
k k ~) k k
_S 206k -1)+ 22248 S 06 k- 1)+ OO S o k- i)+ 2% S 206k - i) +
-0 1+ ak ioo 1+ak S 1+ ak i (S40a)
k
+—2 S0k —i) - (k+1)2(0.5+¢)% =
1+akj:0
-1 -1
K205+ £)(05-2) % 5205+ 2)2 + 222 k051 5+ 03D L 2% ro05, 055kt
l+a 1+ ok l+ak 1+ak l+a
4 2% 42054 8)2 +—% k(054 &) (k+1)2(05+£)? =
1+ ak 1+ ok
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20 N 2k
l+ak 1+ak

=(05+¢) [k2+k2 —(k+1) j+(o.5+g)( ! | ke j+k2(o.5+g)(o.5—g)kll:“(u 2a ):
(04

1+ok 1+ak 1+ok

2k o+ 2k
1+ ok

1+ak [1+ak+2a)_

:(0.5+g)2[k2+ —(k+1) J+(05+g)+k(05+g)(05— £)
1+ ok

(S40b)

= (0-5+8){(0-5+e)[k2 + 2k — (k +1)2]+1+k(o.5—e)(1+af++1ﬂ -
a

=(o.5+g){ (0.5+ &) +1+ k(05— 5)(1+ak+1ﬂ (05+g){05 £ +k(05- ‘9)[1+ak+1ﬂ
l+a 1

+a

(0.5+£)(0.5—&)(k +1) = (0.5+£)(0.5—&)(k +1)

=(0.5+g)(0.5—g){1+k+k“(k+1)} Ira+ak 1+a(k+1)
l+a 1+« 1+«

Substituting the results of egn (S40) into egn (S39):

(05+8)

2(2 +1)0, k z)+1+"‘ n S (2400, k—i)— (k +1)2 (05+ £)? =

o(k+1) = \/Zz O,k —i)+
=0 (S41)

(k+1

(k+1)+a

1+a(k+1)
+a l+a

\/(05+g)(05 )k +1) =T \/(05+ £)(0.5-¢)

(k+1)

Eqgn (S41) proves that eqn (23) is true for all positive integers.
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Equation (24):

In a previous work cited as reference 39 in the manuscript, it is shown that the final distribution can be
obtained using the following formula:

f(x,)= lim (r +5)O(r,s) (S42)

(r+s)—>wo,xp=r/s

Combining eqn (S42) and eqn (21) gives:
ﬁ(O.S +e+ ai)ﬁ(O.S— &+a)

f(x )= Nm  (r+9)0(s) = lim (r+s)(r+sj =0 =0 =
" +5) >0, Xp= +8)—>0,xp=r/s r r+s-1 .
1A+ i)
i=0
H(05+£+az)]_[(05 g+az)
C o dim (ras) -
(r+s)—>0,xp=r/s rlsl ris—l .
1A+ i)
i=0
1 0.5+ 1 05—
15y O3+ F 4 @)X 8-+
= lim (r+s) = ] ' =
(r+s)—>w,xg=r/s rs H (T n 0,/)
i=1 1
- (0.5+¢&) ‘105+g S(05 £)s1 05— £
. (I’+S) o H( o H( ai
= lim (r+s) Traid =
(r+s)—>w,xg=r/s rs ,+Y H ( +a)
i=1 l
(S43)
(05+g) —105+g (05 5)5‘105 an
_ lim (r+s)2—1/a (}"+S)1/a H( H(
_(r +5)omxg=r/s L O05+e)a 1-05-¢)a | (05+)a (05-¢)a 1 r+s-1 1
R r S r S - H ( +a)
The Euler limit form of the gamma function is:
I'(2)=lim () (s44)

e 2+ 2) 1+ 2/2)A+2/3)...(A+ 2/ k)

Further transformation of eqn (S43) taking egn (S44) into account gives
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r=1 — s—1 —
2 v yo OB O5tE ) 052 05-s )
f(x ): lim (r+s) (F+S) [2 i=1 al a i=1 al _
. r (r+s)—>0,xp=r/s rl—(0.5+e)/asl—(0.5—a;)/a r(0.5+é:)/as(0.57s)/a irﬁl (} . a)
a =1 1
$45)
05+&)=t 0.5+¢ 05-¢)s5t 05-¢ (
05+e)a-1 (05-c)la-1 Va ( ) [+ ( ) [M———+9

_ lim ( j ( j (r+s) a i a i i _

(r+s)>woxg=r/s\ y + 8§ r+s i rﬁl (} 4 a) r(O'SH)/a 5(0'576)/0{

a =1 1

i5
F[o.saw)r(o.sa—g)

The beginning and the end of eqn (S45) gives eqgn (24).

_ R(0.5+5)/a71 (1 —Xg )(0.5—8)/(2—1
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Equation (25):

Eqgn (S5) (which appears under the proof of eqn 7) will be used as a starting point. Variable s will be
considered as a function of variable ». The lower two equations in eqn (S5) and a differentiation rule
similar to the one given in egn (S9) gives the following ordinary differential equation:

§_0.5—8+05S§(F) (S46)
dr 05+¢+ar®

The initial conditions are » = 0 and s = 0. First of all, note that the derivative is always positive,
therefore s(r) is @ monotonic increasing function.

The proof presented here will be quite long and somewhat complicated. To help the understanding, the
general strategy is outlined as follows:

Part 1: 1t will be shown that the following upper limit applies to function s(r) defined by
differential equation (S46):
5() < 05-¢ foranyr» >0 (S47)
r 05+¢

Part 2: 1t will be shown that exactly on of the following statements is true:
2.1. Function s(7) is limited and there exits a real number (Z) for which

lims(r) < Z (S48)

2.2. A suitable function Z(r) and a real number r4 can be defined for which
2(r) > s(r) forany r>ry (S49)

Part 3: It will be shown that from both statement 2a and 2b it follows that

im0 _ o (S50)

Fow0 P

Part 4: 1t will be shown that egn (25) follows from egn (S50).

Part 1:

1.1. Eqgn (S46) and the definition of the first derivative of a function gives:

%(” _0)= 05-¢ _lim s(r)-0 _lim s(r) (S51)

05+¢ 0 r-0 r—0

First, number X is defined as:
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Y= 5/0'5_8 B 05-¢ (S52)
05+¢ O05+¢

X > 0 because

£>1 and 15 09°¢ (S53)
05+¢
Eqgn (S51) states that function s(»)/r has a limit at » = 0, therefore a ¥ > 0 number exists so that
str) _05-¢ <X forany O<r<Y (S54)
r 05+¢
1.2. An indirect method will be used to prove that forany 0 <r <Y,
ﬂ<M forany O<r<7Y (S55)
r 05+¢
Assume that there exists an »*, for which 0 < »* < Y and
% _ _
s(r¥) S 05-¢ N (%) > 05 £ (S56)
r* 05+¢ 05+¢

Next, Cauchy’s mean-value theorem is used with the two functions f = s(r) and g(r) = r
(http://mathworld.wolfram.com/CauchysMean-ValueTheorem.html) to show that there exists at least
one r,, for which0 <r, <r* <Y and

s(r*) =0 _s(r*) _ds
r*-0 r* dr

(1) (S57)

Combining egn (S57) and (S56) gives

ds 05-¢
“ > S58
o 055e (559)
From eqn (S46) it follows that
05- ¢
ds .y 05-etas”(n) (S59)
dr 05+¢e+ Otra‘“'r

Combining egn (S59) and eqn (S58) gives
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05-¢ < 05—¢+as®(r,)

< (S60)
05+¢  05+e+ar”
After rearrangement, one obtains:
¢ ¢ 05—
ra S s (ra) = g M S S(ra) (861)
05+¢ 05-¢ 05+¢ Ty
Subtracting the same number from both sides of eqn (S61) and substituting eqn (S52) gives:
y_d05-e 05-& _s(r) 05-¢ _|s(r) 05-¢ (s62)
05+¢e 05+¢ r, 05+¢ ‘ T, O.5+e‘
However, eqn (S62) contradicts eqn (S54). Eqn S(55) must be true then.
1.3. Now, eqgn (S47) can be proved with an indirect method.
Eqn (S55) shows that eqn (47) is true for any 0 < » <Y. Assume that there exists » > Y for which
05-¢
s(r) > r S63
") 05+¢ (563)

Function s(r) is continuous, therefore certain » values must exist at which the equation holds in egn
(S63). Let r,the smallest such value. Consequently, this r, satisfies the following conditions:

05-¢ s(r) 05-¢
r, and STl 2
05+¢ r 05+¢

s(ry) = foranyr <n, (S64)

Because of Cauchy’s mean-value theorem, there exists at least one rc, for which 0 < <, and

s(r,)=0 s(r,) _ﬁ
r, =0 7 dr

(re) (S65)

Combining eqn (S65) and eqn (S64) gives

05-¢

ds
Z(r) = S66
o' 0550 (566)
From differential equation (S46) one obtains:
_ ¢
é(”c) _ 05—-¢+as® () (S67)
dr 05+¢+ar,®

S24



Supplementary data for Physical Chemistry Chemical Physics
This journal is © The Owner Societies 2007

Combining eqn (S67) and eqn (S66) gives

0.5—8_0.5—8+C¥S§(I’C) (S68)
05+¢  05+e+ar®

After rearrangement, the following equation is obtained:

rcg _ S‘f(rc) N s(r,) _ 5/0.5—8 S 05-¢ (S69)
05+¢ 05-¢ 7, 05+¢ 05+¢

Eqgn (S69) contradicts the second condition in egn (S64). Eqgn (S44) must be true then.
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Part 2:
Define rq as the value for which

s(ry) = 05-¢ _7z (S70)

£ (0.5+8j(§l)/2
(04 -
05-¢

2.1. Function s(r) is monotonic and increasing. If there is no r4 which satisfies eqgn (S70), then
function s(r) is limited and

. 05-¢
lims(r) < (S71)
r—> £ ( 05+ 8](45—1)/2
a -
05-¢

Eqgn (S48) follows from eqgn (S71) and eqgn (S70).

2.2. If a suitable rq exists in egn (S70), the fact that s(r) is a monotonic increasing function guarantees
that

05-¢

£ (o.5+gj(“/2
a -

s(r) > forany r > r, (S72)

05-¢

2.2.1. First it will be proved that

(&+1)12
(Mj > forany r > r, (S73)
r dr

Rearranging eqn (S72) gives:

05+ (6-1/2
a( 0'5 8) < (r)rEZ — g5 (r)r 2 > (05 - ) D2 (S74)
5-¢

Eqgn (S47) can be rearranged into the following form:

(E-1)12
SEDR 3 (@J e (S75)
05+¢

Eqgn (S74) and eqgn (S75) can be combined to give the following formula:

05—\
o5 (EHD2 ()ré > a( . j ¢ (r)r(§+1)/2 (S76)
05+¢
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It is evident that

0< (05+¢)s ™2 () (S77)
Combining eqn (S77), eqn (S76) and (S74) gives:

as 2 (r)re —as® (r)rE? 1+ (05+)s 2 (1) - (05— £)rEP2 > 0 (S78)
Rearranging eqgn (S78) yields:

s©ED23 . 05—¢+as® (r)

S79
p(HDf2 05+¢+ar® (579)
Combining egn (S79) and eqn (S46) gives eqn (S73).
2.2.2. Consider function 2{r) defined as:
_ r _ (1-&)2y-2/(&-1)
X(r) = T =(C+r ) (S80)
where
C = -6 (ry) -1 1-&)r2 (S81)
Substituting egn (S81) into egn (S80) show that
2(ry) = s(ry) (S82)
Differentiating 2{r) gives
@ — (C+ r(lfé)/2)72/(§71) — -2 (C+ r(lfg)/2)72/(§71)71 1_§ r(lfé)/271
dr -1 2
(S83)

()2
L (C 4 p TR (EDED (2 (@j
r

Eqgn (S73) and eqgn (S83) can be combined to give the following:

(E+1)/2 (E41)12
ds s(r, >(r, dx
By <[ 2] [(H) ) (84)
dr r r dr
Consequently, there exists a number W > 0 so that
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(S85)

2(r) > s(r) forany ry<r<rg+W

2.2.3. Eqgn (S49) will be proved by an indirect method. Let’s assume that egn (S49) is not true so

there are » > r4 values for which
(S86)

2(r) < s(r)
Function s(r) is continuous, therefore a certain » values must exist at which the equation holds in egn

(S86). Denote the smallest such value r..
(S87)

S(re) =Z(re)

Eqgn (S85) shows that ».>rg+ W. r.is the smallest, so forany rq<r<r,
(S88)

s(r) < 2(r) foranyry <r<r,

Eqgn (S88), egn S(83) and eqgn (S73) can be combined to yield the following:
(S89)

(E+1)2 (£+1)12
S(r)j < [wj = @(r) foranyry <r<r,
r

ds
—(r)<|— =
dr ") ( r dr
Because of Cauchy’s mean-value theorem there exists at least one 7, for which ry < r¢ < re

ds( )

s()=sCa) o dr ds  \_dT

Z(re)—Z(rd)_l_dz(rf) = dr(f)—dr(f)
dr

(S90)

This equation contradicts egn (S89). Eqn (S49) must be true then.

Part 3.
For case 2.1, eqn (S71) can be used to prove that eqn (S50) is true.

05-¢

£ (0.5+ej(§1>/2
(04 -
< (S91)

lim s(r
fim 50) _ A2
roo p limr

F—>00

05—
€ 0

o0

For case 2.2, eqn (S49), can be used to prove that eqn (S50) is true.
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r
(-2 (£-1)12
lim 5 < jim Z0) _ jj —_VL+Cr - ! 1o (592)

r—w p row p r— r - lim (5_1)/12114_ Cr(f_l)lz B 0

r—>®0
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Part 4
Eqgn (S50) can be used to prove the following:

lim ce = lim ce = lim _ lim 1()= ! ()=110= (S93)
TR 0 T S0 o0
7 r—oo

The beginning and end of egn (S93) yields eqn (25).

Further notes:

For integer values of &, the differential equation in eqn (S46) can be solved analytically. Separation of
the variables and integration gives:

ds _ dr (S94)
05-¢+as°(r) ~05+c+ar®
For &= 2, the implicit solution is (also taking the initial conditions, » = 0 and s = 0, into account):
arctg r\/ e = \/ 0'5+8arctg s @ (S95)
05+¢ 05-¢ 05-¢
The explicit solution is
05-¢ 05-¢ a
= t arct S96
* \/ o gl:\/0.5+5 g[r O.5+8J:| (596)

More complicated implicit solutions can be derived for &= 3.
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Equation (26):

First, a limiting formula for the central binomial coefficient will be proved. The following inequity
will be used a starting point (http://mathworld.wolfram.com/StirlingsApproximation.html):

ﬂnn+0.5€—n+l/(12n+l) < nl< \/ano.se—nﬂ/(lzn) (S97)
Squaring the first part of eqn (S97) gives:

(ﬂnnm.seinu/aznm)z <nlpl (S98)
Applying the second part of eqn (S97) for 2n gives:

(2n)!< \/Z(zn)znw.s o 2mH/ (24n) (599)
Dividing eqgn (S99) with egn (S98)

(271)' g \/Z(Zﬂ) 2n+0.5672n+1/(24n)

! 2 214l p—2n+2/(2n+1) (S100)
Rearranging eqgn (S100) yields:
211) 2% oany2/amny _ 2%
<T—¢ < = (S101)
( n nmw ni

Next, a limiting formula for Q(n,n) will be proved. The concept of paths as used in the proof of
eqn(12) and (13) will be used here as well. State (n,n) can be formed in = different paths where

n

2= (2”) (5102)

One path is represented by a (2rn+1)-membered series m, where m; gives the number of Bg steps after
step i. Obviously, mg =0, my, = n and m; < m;+1. The probability of one path is given by

2n-1 N
oTe e g 1+amS +a(i-m,)*
where
N=(05+¢+ aml;) it m,>m (S104)

N=(05-c+a(i-m)* if m,=m,

1

Out of 2n overall steps, there are n R steps and » S steps. Therefore

2n-1 1 n-1 n-1
e = 05+ & +am, )[][0.5-&+a(i—m,)] (S105)
M gl+amf+a(i—mi)§g) g
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The definition of m; values ensures that
1+ am® +a(i-m)* <l+am,° +a(i-m,,)* (S106)
Rearranging eqgn (S106) yields:

1 1

< (5107)
l+am,,* +a(i-m.,)° l+am® +a(i—m,)*

Combining eqn (S105) and eqn (S107) gives:

n-1 1 n-1 n-1
o (05+&+am )][05-c+a(i-m)] (S108)
oo [+ am,® +a(i—m[)‘f]2g Ho

Rearranging (S108) yields:

P < Hl (05+&+am,)[05-¢+al(i - m.)*]
" i [1+om* +a(i—m)]

(S109)

The inequity between the geometric mean and arithmetic mean of two numbers gives:

0.5+&+am +05-c+a(i—m,)*
2

JO5+ &+ am)0.5— & +a(i—m,)°] < (5110)

After squaring and rearranging egn (S110):

(0.5+&+am)05-c+a(i—m,)°] 1

(S111)
[1+am° +a(i—m)*] 4

Combining egn (S108) and eqn (S111):

n-1 ,‘f — | —m. 4 n-1
S H(0.5+8+aml )[0.5 g+0:(z2 m;) ]S E: 1 (S112)
"0 [1+am, +a(i—m)*] -4 27

O(n,n) can be obtained as the sum of all path probabilities:

O(nm)=" 3 Puommympy < 2 ! :(Zn”) L (S113)

2 2
all = paths all © paths 2" 2°"

Combining egn (S112) and (S101) gives:
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o\ 1Y 27 (1) 1
QW“(J@ <ﬁ@ T (S

The non-defining part of eqn (12) for R(2k+1) is:

Rk +1) = 265 200 (S115)
201+ 2ai®

Combining egn (S115) and eqgn (s114):

o(, l) 1 1 2¢ k 1
R(2k +1) =2¢ <2y = (S116)
ZZ(:) 1+ 2ai® i- o\/_l+20a \/;1 0i%° + 20 0°
As the function after the sum at the very end of eqn (S116) is a monotonic decreasing function, the
following inequity holds:

1 L di
% 120100 - '[ % 4 2¢it0d (S117)
Substituting egn (S117) into egn (S116) gives:
R(2k+1)<25+ k;<25+ 5 IL—Z?%——I (S118)
\/_l 2% 4+ 200700 \/_ i1 i% + 200700 05+20a§ +05

The beginning and end of eqn (S118) gives eqn (26).
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Equation (27):

Based on eqgn (9), it can be seen that

b105+¢e+ai® 105+ ai®

0(b,0) =11 (S119)
i=0 +ai® iz0 1+ ai®
In a previous work cited as reference 39 in the manuscript, the following equation is proved:
h-1 &
lim| 5[] 22" | o (S120)
bl o 1+ i

A combination of eqn (S119) and (S120) gives egn (27).
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Equation (28):

Dviding the two parts of egn (9) gives:

b105+ ¢+ ai®
000) _io 1+aif :b—10.5+g+ai5:b—1(1+ 2¢ j
0(0,h) b105-e+ai® i=005-e+ai® i 05-¢+ai®
0 l+ai®

(S121)

Taking the natural logarithm of eqn (S121) and subsequent arithmetic transformations give:
b-1 b1
|n(wj = |n[H(1+ LH =y |n[1+ L] (S122)
0(0,b) o\ 05-—e+ai® i=0 05—¢+ai®

The Mercator series (http://mathworld.wolfram.com/MercatorSeries.html) of natural logarithm shows
that for any x >0

In(1+x) < x (S123)

Using egn (S123) in egn (S122) yields:

0(b,0) ] bl 2g bt 1
In < =2y —~— S124
(Q(O,b) Eoo.S—Haﬁ’ Z(:)O.S—s+ai§ (5124)

As the function after the sum at the very end of eqn (S124) is a monotonic decreasing function, the
following inequity holds:

1 i di
< S125
05-¢+ai*™®® ,~'_[10.5—g+a1'"€ ( )
Substituting egn (S125) into eqn (S124) gives:
b-1 bh-1i .
In 0(.0) < 2 +2¢ ! < 2 +2e). __d =
00,b)) 05-¢  H05-e+ai° 05-&  3,7,05-¢+aif
(S126)
b1 . 1 : b1 g
__% +2¢ di < 2 +2¢| di +2¢ | i
0.5—8 0 05—8+alé: 05—8 00.5—8 1 alé:
Calculating the integrals (for £ > 1) indicated at the end of eqn (126) gives:
1 ; b1 g: z_ _ _
ZSJ di 2 J di 2 N 26(6-1) 2e(-1) - 2¢ N 2¢(¢-1) (5127)

005-¢ 1@ 05-5 o1t (-1t 05-¢ a

Combining eqn (S126) and eqn (S127) gives:
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In[ 0(b.0) ) SR N Gt (S128)
00,b)) 05-¢ o

Straightforward transformation of eqn (S128) gives eqgn (28).
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Equation (29):

Rearranging equation (28) yields:

bOO) 150 p)

phe/(05-¢)+2(6-)e /o
Equation (27) show that

limb0(b,0
i bowo) _ mpoeo o .
bosw 46 /(05-¢)42(5-)z /o - o4 /(05-6)+2(§-1)e ) a - o4 /(05-c)+2(§-)e ) a -

A combination of egn (S129) and egn (S130) gives eqgn (29).
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Methods for estimating regions in Fig 2:

The boundary of the high ee region was calculated by direct calculation of £(N) from egn (8) and egn
(18) for low (< 1000) values of N. For larger values of N, the continuous distribution given in egn
(24) is valid and the critical value of « from the cumulative distribution function obtained by
numerically integration of the distribution function.

The boundary of the de lege region was calculated by applying eqn (26) for & = 1 followed by
numerical integration.

The boundaries of the stochastic region and the significant Bgr excess region were calculated directly
using eqgn (23).

Methods for estimating region in Fig. 3

The boundary of the de lege region was calculated by applying eqn (26) for & > 1 followed by
numerical integration.

The boundaries of the high ee region and stochastic region were estimated as follows:

— For low (< 5000) values of N, o (N) was directly calculated by determining each Q(r,s) value with
the recursive definition given in egn (8).

— For high values of N, a mixed stochastic-deterministic approach very similar to the one used in
reference 39 was used. For every value of «, a small Ny was found for which the autocatalytic part of
the rate equations was negligibly small compared to the non-catalytic part. It is known that the
distribution for a system with non-catalytic reactions only is a binomial distribution. This can be
approximated very well with a normal distribution for large values of N. 100 points were selected from
this distribution equidistantly scattered in the cumulative distribution function. Eqgn (7) was
numerically integrated with the Runge-Kutta algorithm for all these 100 initial conditions. Therefore
estimates for o (V) were obtained for N > Ny values. Ny was selected to be the smallest possible value
for which the numerical integration showed

0'(1.02><N0) >m
o (Ny) '

Methods for estimating lines in Fig. 4.

The boundary of the de lege region was calculated by applying integrating eqn (26) followed by
numerical integration up to 10“°. The high ee region was estimated by numerical integration of eqn (7)
and finding the values of « at which ee(N=10*) = 0.9 or ee(N=10"") = 0.9, respectively.
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