Electronic Supplementary Information (ESI)

Electronic Coupling Between Base Pair Dimers of LNA:DNA Oligomers

Anela Ivanova[#], Grzegorz Jezierski, and Notker Rösch*

Department Chemie, Theoretische Chemie, Technische Universität München, 85747 Garching, Germany

[#] On leave from University of Sofia, Faculty of Chemistry, Department of Physical Chemistry, 1 J. Bourchier Ave., 1164 Sofia, Bulgaria

^{*} Corresponding author: E-mail: roesch@ch.tum.de

Formalism used in the manuscript

For convenience of the reader, we summarize below the essentials of the FCD method.¹

Within the framework of the FCD method,¹ the following formula is used for calculation of the coupling matrix elements between the donor and the acceptor state:

$$H_{DA} = \frac{(E_2 - E_1)|\Delta q_{12}|}{\sqrt{(\Delta q_1 - \Delta q_2)^2 + 4\Delta q_{12}^2}},$$
(S1)

where Δq_1 and Δq_2 are the donor-acceptor charge differences in the corresponding adiabatic states within a two-state model, Δq_{12} is the off-diagonal term, and E₂-E₁ is the adiabatic splitting between donor and acceptor states. E₂-E₁ is estimated within Koopmans' approximation as the difference between the two highest occupied molecular orbitals (HOMO and HOMO-1) in the closed-shell neutral base-pair dimer. The dimer wavefunctions are calculated with RHF/6-31G*. Fragment charge differences (Δq_{mn}) are based on Mulliken-type fragment charges (q_{mn}):

$$q_{mn}(F) = \frac{1}{2} \left[\sum_{i \in F} C_{i,HOMO+1-m} \sum_{j=1}^{M} C_{j,HOMO+1-n} S_{ij} + \sum_{i \in F} C_{i,HOMO+1-n} \sum_{j=1}^{M} C_{j,HOMO+1-m} S_{ij} \right]$$
(S2)

$$\Delta q_{mn} = q_{mn}(D) - q_{mn}(A) \tag{S3}$$

F - D or A; m,n – 1,2; M – index for basis-set atomic orbitals; C_i and C_j – coefficients of the corresponding molecular orbitals, and S_{ij} – overlap integrals.

¹ A. A. Voityuk and N. Rösch, J. Chem. Phys., 2002, 117, 5607-5616.

Table S1: Average values $\langle H_{DA}^2 \rangle$ (with standard deviations) of the FCD coupling elements, calculated for dimer **5-6** in **DNA-DNA** and **5_1LNA-DNA** from batches of different size, i.e. consisting of snapshots extracted at different time intervals. Time steps in ps, energies in eV².

Dupley	Time	Structures in	$\left\langle H_{DA}^{2} ight angle$	
Duplex	step	batch		
5_1LNA-	20	500	0.0095±0.0115	
DNA	14	714	0.0093 ± 0.0109	
	10	1000	0.0094±0.0113	
	8	1250	0.0093±0.0111	
	6	1666	0.0089 ± 0.0105	
	4	2500	0.0093±0.0110	
	2	5000	0.0092 ± 0.0109	
DNA-	20	500	0.0084±0.0111	
DNA	14	714	0.0087 ± 0.0114	
	10	1000	0.0084 ± 0.0114	
	8	1250	0.0081 ± 0.0110	
	6	1666	0.0084±0.0113	
	4	2500	0.0083±0.0111	
	2	5000	0.0083±0.0113	

Duplex 1	Duplex 2	Dimer	p-value	Duplex 1	Duplex 2	Dimer	p-value
DNA-	2_1LNA-	1-2	6.6×10 ⁻²	DNA-	3LNA-	1-2	2.2×10 ⁻²
DNA	DNA	2-3	4.0×10 ⁻⁵	DNA	DNA	2-3	<1×10 ⁻⁵
		3-4	<1×10 ⁻⁵			3-4	<1×10 ⁻⁵
		4-5	4.1×10 ⁻³			4-5	<1×10 ⁻⁵
		5-6	4.1×10 ⁻²			5-6	1.0×10 ⁻⁵
		6-7	4.2×10 ⁻¹			6-7	<1×10 ⁻⁵
		7-8	3.6×10 ⁻²			7-8	4.1×10 ⁻²
		8-9	1.2×10 ⁻³			8-9	<1×10 ⁻⁵
DNA-	5_1LNA-	1-2	4.9×10 ⁻¹	DNA-	9LNA-	1-2	<1×10 ⁻⁵
DNA	DNA	2-3	1.8×10 ⁻²	DNA	DNA	2-3	<1×10 ⁻⁵
		3-4	<1×10 ⁻⁵			3-4	<1×10 ⁻⁵
		4-5	2.1×10 ⁻³			4-5	<1×10 ⁻⁵
		5-6	1.1×10^{-1}			5-6	<1×10 ⁻⁵
		6-7	6.5×10 ⁻²			6-7	<1×10 ⁻⁵
		7-8	9.5×10 ⁻¹			7-8	<1×10 ⁻⁵
		8-9	5.0×10 ⁻⁴			8-9	<1×10 ⁻⁵
DNA-	7_1LNA-	1-2	6.4×10 ⁻¹	3LNA-	9LNA-	1-2	<1×10 ⁻⁵
DNA	DNA	2-3	5.7×10 ⁻²	DNA	DNA	2-3	<1×10 ⁻⁵
		3-4	3.3×10 ⁻²			3-4	<1×10 ⁻⁵
		4-5	1.1×10^{-1}			4-5	<1×10 ⁻⁵
		5-6	1.2×10^{-2}			5-6	<1×10 ⁻⁵
		6-7	6.0×10 ⁻¹			6-7	<1×10 ⁻⁵
		7-8	<1×10 ⁻⁵			7-8	<1×10 ⁻⁵
		8-9	<1×10 ⁻⁵			8-9	<1×10 ⁻⁵

Table S2: p-values yielded by the double-sided t-tests on the difference between the calculated average H_{DA}^2 values for pairs of identical dimers in different duplexes.

Figure S1: Trajectory evolution of H_{DA}^2 calculated for dimer **5-6** in **DNA-DNA** (left panels) and **5_1LNA-DNA** (right panels) within snapshot sets of 500 (top panels) and 5000 (bottom panels) structures.

Figure S2: (a) Highest occupied molecular orbitals (HOMOs) of DNA bases without sugar (left panels), with DNA sugar (middle panels) and with LNA sugar (right panels); (b) energy diagram of HOMOs of DNA bases without sugar (black), with DNA sugar (blue) and with LNA sugar (red).

Figure S3: Squared values of the electronic coupling elements calculated for each snapshot of dimers 1-2 and 2-3 (top panels), 4-5 and 6-7 (middle panels), and 7-8 and 8-9 (bottom panels) from DNA-DNA (blue), 3LNA-DNA (red) and 9LNA-DNA (black).

Figure S4: Comparison of rms values of coupling elements H_{DA} between dimers, from MD trajectory snapshots, with coupling elements of the corresponding average structures. Color code: **DNA-DNA** (MD) – blue, **DNA-DNA** (average) – cyan, **3LNA-DNA** (MD) – red, **3LNA-DNA** (average) – brown, **9LNA-DNA** (MD) – black, **9LNA-DNA** (average) – grey.