Supplementary data for *Physical Chemistry Chemical Physics*. This journal is © The Owner Societies 2007

	Pulv2 ⁰	Pulv2 ⁻¹ COOH	Pulv2 ⁻¹ enol	Pulv2 ⁻²	Pulv3 ⁰	Pulv3 ⁻¹		
HF/6-31G(d)//H	HF/6-31G(d)							
$E_{tot}(Z)$	-1290.7009	-1290.1836	-1290.1454	-1289.5147	-1329.7255	-1329.2061		
$E_{tot}(E)$	-1290.7123	-1290.1937	-1290.1797	-1289.5125	-1329.7397	-1329.2119		
$\Delta E_{tot}(Z-E)$	7.2	6.3	21.5	-1.4	8.9	3.6		
HF/6-31G(d,p)//HF/6-31G(d)								
$E_{tot}(Z)$	-1290.7382	-1290.2155	-1290.1773	-1289.5400	-1329.7609	-1329.2350		
$E_{tot}(E)$	-1290.7499	-1290.2262	-1290.2162	-1289.5379	-1329.7754	-1329.2407		
$\Delta E_{tot}(Z-E)$	7.3	6.7	24.4	-1.3	9.1	3.6		
$\delta \left(H_{8a} / H_{8b} \right) Z$	7.9 / 7.7	7.6 / 7.5	9.3 / 7.7	9.1 / 8.3	7.8 / 7.6	8.3 / 8.2		
$\delta \left(H_{8a} / H_{8b} \right) E$	7.6 / 7.7	7.6 / 7.6	8.6 / 7.6	9.2 / 8.3	7.4 / 7.5	8.2 / 8.4		
$<\delta>Z^{a}$	7.8	7.6	8.5	8.7	7.7	8.2		
$<\delta>E^{a}$	7.7	7.6	8.1	8.7	7.4	8.3		
B3LYP/6-311G ⁺⁺ (d,p)//HF/6-31G(d)								
$E_{tot}(Z)$	-1298.6649	-1298.1656	-1298.1354	-1297.5192	-1337.9683	-1337.4638		
$E_{tot}(E)$	-1298.6798	-1298.1768	-1298.1635	-1297.5160	-1337.9861	-1337.4692		
$\Delta E_{tot}(Z-E)$	9.3	7.0	17.6	-2.0	11.2	3.4		

<u>Table S1</u>: Total energies (E_{tot} , in Hartree) and relative (ΔE_{tot} , in kcal/mol) QM energies, and δ (¹H) NMR chemical shift (in ppm) of the H₈ protons of the different Pulv2 and Pulv3 species. Comparison of HF/6-31G(d)//HF/6-31G(d), HF/6-31G(d,p)//HF/6-31G(d) and DFT-B3LYP/6-311G⁺⁺(d,p) // HF/6-31G(d) results.

a) Mean value of the chemical shifts of the two ortho protons.

	$E_{tot}(E/E)$		$E_{tot}(Z/Z)$		$\Delta E_{tot}(E/E-Z/Z)$			
	HF	B3LYP	HF	B3LYP	HF	B3LYP	AMBER	AMBER
	6-31G(d)	6-31G(d)	6-31G(d)	6-31G(d)	6-31G(d)	6-31G(d)	gas phase	methanol
NBA ²⁻ COOH	-2457.7744	-2471.8703	-2457.7598	-2471.8546	-9.2	-9.8	-11	-5
NBA ²⁻ enol	-2457.7552	-2471.8703 ^{a)}	-2457.7001	-2471.7981	-34.6 ^{a)}	-45.3	-20	-31
NBA ⁴⁻	-2456.2664	-2470.3620	-2456.2626	-2470.3547	-2.6	-4.6	-16	-8

<u>Table S2</u>: Total (E_{tot} , in hartree) and relative (ΔE_{tot} , in kcal/mol) QM and MM energies of the NBA²⁻ and NBA⁴⁻.

a) Upon B3LYP/6-31G(d) optimisation of the NBA²⁻_{enol}, the OH proton spontaneously transferred to the CO₂⁻ group forming NBA²⁻_{COOH}. Therefore the ΔE (E/E – Z/Z) DFT energy corresponds to different protonic state.

Supplementary data for Physical Chemistry Chemical Physics.
This journal is © The Owner Societies 2007

		$Cs_1^{\cdots}O_{NBA}$	$Cs_1 \\ O_{MeOH}$	Cs2 O _{NBA}	Cs2 O _{MeOH}
NBA ²⁻ COOH	Z/Z	0.0	6.3	2.1	4.5
	E/E	2.0	4.9	0.0	6.3
NBA ²⁻ enol	Z/Z	0.9	6.0	0.0	6.2
	E/E	0.0	5.9	1.3	5.0
NBA ⁴⁻	Z/Z	2.7	5.6	2.8	5.8
	Z/E	3.2	5.3	3.2	5.6
	E/Z	3.0	6.0	3.4	5.5
	E/E	1.9	6.2	4.4	4.8

<u>Table S3</u>: NBA²⁻ 2Cs⁺ and NBA⁴⁻ 2Cs⁺ complexes simulated in methanol. Average coordination number of the Cs⁺ cations obtained by integration of the Radial Distribution Functions (RDF's) of O_{NBA} and O_{MeOH} oxygens up to 4 Å. Averages during the last 200 ps of dynamics.

<u>Figure S1</u>: CP-MD simulation on the Pulv⁻¹ E_{COOH} species. H_{COOH} ...O_{enolate} and (CO)O-H distances (in Å) as a function of time (after 1 ps of equilibration; not shown).

<u>Figure S2</u>: Optimized structures and energies of the COOH and enol(OH) forms of the methylated PulvMe analogue of the Pulv2 pulvinic acid.

Supplementary data for *Physical Chemistry Chemical Physics*. This journal is © The Owner Societies 2007

Figure S3 : Experimental chemical shifts d from 1H NMR titrations as a function of pH at 25°C (CD₃OD:D₂O-80:20) for the NBA (top), Pulv2 (middle) and Pulv3 (bottom) species (from Kuad et al, *J. Am. Chem. Soc.*, **2005**, *127*, 1323-1333). See Figure 2 for the proton labels.

Supplementary data for *Physical Chemistry Chemical Physics*. This journal is © The Owner Societies 2007

<u>Figure S4</u>: Relative energies of the Pulv2⁻¹ et Pulv2⁻² (HF/6-31G(d) calculations) as a function of the ϕ angle. Calculated by stepwise rotating the ϕ angle (from 0 to 180° by increments of 30°), and optimizing all other degrees of freedom.

Plain red curve : $Pulv2^{-1}_{COOH}(E)$, dotted red : $Pulv2^{-1}_{COOH}(Z)$, plain black : $Pulv2^{-2}(Z)$, dotted black : $Pulv2^{-2}(E)$.

<u>Figure S5</u>: NMR shifts of the H_8 protons of the Pulv2 species (HF/6-31G(d,p)// HF/6-31G(d) calculations) calculated as a function of the ϕ angle.

Plain red curves : $Pulv2^{-1}_{COOH}(E)$, dotted red : $Pulv2^{-1}_{COOH}(Z)$, plain black : $Pulv2^{-2}(Z)$, dotted black : $Pulv2^{-2}(E)$.

<u>Figure S6</u>: Final snapshots of the Z/Z, Z/E, E/Z and E/E isomers of NBA^{2-}_{COOH} and NBA^{2-}_{enol} simulated by MD in the gas phase. Orthogonal views (left and middle) and top views (right).

<u>Figure S7</u>: Final snapshots of the Z/Z, Z/E, E/Z and E/E isomers of the NBA⁴⁻ molecule simulated by MD in the gas phase. Orthogonal (left and middle) and top views (right).

<u>Figure S8</u>: Final snapshots of NBA^{2-}_{enol} , NBA^{2-}_{COOH} and NBA^{4-} with the Z/Z and E/E isomers of the norbadione in methanol. Orthogonal (left and middle) and top views (right).

<u>Figure S9</u>: Final snapshots of the NBA²⁻_{COOH} $2Cs^+$ and NBA²⁻_{enol} $2Cs^+$ and NBA⁴⁻ $2Cs^+$ complexes with the Z/Z and E/E isomers of the norbadione simulated by MD in the gas phase. Orthogonal views.