Probing the microscopic hydrophobicity of smectite surfaces. A vibrational spectroscopic study of dibenzo-p-dioxin sorption to smectite

Kiran Rana¹, Stephen A. Boyd², Brian J. Teppen², Hui Li², Cun Liu² and Cliff. T. Johnston^{1*}

¹Crop, Soil and Environmental Sciences, Purdue University, 915 W. State Street West Lafayette, IN 47907-2054, USA 765 496 1716 (phone), 765 496 2926 (fax), clays@purdue.edu

²Department of Crop and Soil Sciences, Michigan State University, East Lansing, MI 48824, USA

Fig. S1. Peak-fitted spectra of DD –Cs-saponite complex in the region of 1520- 1270 cm⁻¹. Peak fitting was done using mixed Gaussian-Lorentzian function. Peak intensity and Peak area of fitted spectra were used for quantitative and qualitative analysis of DD sorbed to smectite clay with different exchangeable cations.

Fig. S2. Relationship between ATR dichroic ratios (D) and tilt angle (γ) of solute with respect to the surface of IRE. A, B, and D indicate the solute is oriented perpendicular, parallel, and isotropically to the IRE surface, respectively. The relationship between the dichroic ratio and tilt angle of DD sorbed on Cs-saponite are shown in C. Average tilt angle (γ) of the IR transition dipole moment was calculated using the refractive index of ZnSe (2.406), Clay: Saponite (1.504) and water (1.333) and angle of incidence 45°.

Isomorphous Substitution of Mg \rightarrow Al in the octahedral layer (montmorillonite)

Isomorphous Substitution of Al \rightarrow Si in the tetrahedral layer (saponite)

Fig. S3. Ball and stick representation of charge distribution on smectite clay with isomorphic substitution in octahedral sheet (top) and tetrahedral sheet (bottom) representing the approximate charge distribution for montmorillonite and saponite, respectively. Table S 1. Observed and calculated Raman and IR vibrational frequencies (cm-1) of dibenzo-p-dioxin in crystalline and a polar solvents

Experimental			N	Theoretical [‡]	Band Assignment	
Raman fre	quency (cm ⁻¹)	IR frequency	/ (cm ⁻¹)	-	predicted by	
Crystalline DD	DD solution	Crystalline DD	DDsolution		BLYP/631G ⁺⁺	
	(in CCl ₄)	(in KBr Pellet)	(in CHCl ₃)			
242	233			v_{20}	239	C-O-C oop def
267	271			v_{15}	286	°CH oop, skel def oop
399	395			v_{11}	390	skel def
441	438			v_{30}	433	^δ C-O-C,skel def
450	459	450		v_{14}, v_{58}	450	skel def oop
534	531			v_{29}	534	skel def
552				v_{49}	551	^δ CH oop
565				v_{10}	564	^δ C-O-C,skel def
		609		v_{55}	610	skel def
		668		v_{44}	667	^δ C-O-C,skel def
725	731			ν_9	713	benzene ring breth
749	747	746		ν_{18}, ν_{57}	738	^δ CH oop
762				v_{43}	753	^δ CH oop
		831	830	v_{54}	837	ring breath
		851		v_{43}	851	^δ C-O-C,skel def
		858				
897	895			ν_{19}	906	skel def
		908				^b our
927	928	925	928	ν_{42}, ν_{56}	928	CH oop
980		000		v_{16}	1013	СНоор
1020	1020	966	1020		1022	$^{\delta}$ CH alkal daf hanzana ring braath
1030	1030	1030	1030	V ₈ , V ₅₃	1032	δ_{CH} alkal daf
1095		1110	4440	V ₂₇	1077	δ CH skeldef benzene ring breath
1150		1116	1113	V ₂₈	1112	
1153	1151	1150		$v_{7,}v_{52}$	1157	$\delta_{\rm CH}$
1191	1186	1195		v_{26}, v_{41}	11671203	CH, C-O-C, skelder
1225	1227	1225		ν_6	1241, 1203	δ
1278				v_{25}	1246	
		1287	1288	v_{40}	1267	
		1295	1296	v_{51}	1285	С-С, СН
		1303		v_{50}	1296	^v C-O-C, skel def
1317	1315			v_5	1311	^v C-O-C, skel def
		1339				
1416		1390				
1464		1465		Var Vac	1441 1463	^v C-C
1404		1489	1489	V 24, V 39	1481	$^{\delta}$ CH skel def
1502		1408	1400	* 35 V	1407	^v C-C ^v C-O-C ^δ CH
1502		1512		\mathbf{v}_4	1437	e-e, e-o-e, en
		1553				
		1567				_
1587	1588	1591	1591	$\nu_{23,} \nu_{48}$	15641596	^δ CH,skel def
1622	1623	1626		$\nu_{3,}\nu_{38,}$	1608	⁸ CH,skel def
	3022		3075	$v_{32,}$	3075	°CH
	3041		3086	v_{12}	3086	^v CH
	3059		3094	v ₃₃	3094	°СН
	3088		3100	V ₁₃	3100	^v CH
+ - normalized	hy factor 0.0629	- atratabing S-ba	ading Chal- a	coloton or	on- out of plana	dof- doformation

Table S 1. Observed and calculated Raman and IR vibrational frequencies (cm-1) of dibenzo-p-dioxin in crystalline and a polar solvents

normalized by factor 0.9628, v = stretching, δ =bending, Skel= skeleton, oop= out of plane, def= deformation

Ref DD solution‡	Cs-saponite-DD complex			Ref DD solution§	Band Assignment
IR	ATR-FTIR	FTIR-SSCF	Raman-SSCF	Raman§	
				233	C-O-C oop def
				271	⁸ CH oop, skel def oop
			361	395	skel def
				438	skel def
				459	skel oop def
		493			Mg–OH or S1–O of clay
		482			Mg–OH or [°] Si–O of clay
		660	566	531	skel def
	720	000	676	721	Mg-O of clay
	720		720	731	
830	/40 828		129	/4/	skel del CH oop
028	828				
928	074	0.42			
	9/4	942			SI-O of clay
	1016	1014			SI-O oop of clay
1030	1019	1067	1019	1030	^s CH ,skel def, ring breath
1113	1128	1121	1130		° CH , skel def
	1195	1181		1151	°СН
		1227		1186	°СН
				1227	^v C-O-C, skel def
1288	1285	1285	1266		^v C-O-C, ^v C-C
1296	1298	1297	1293		^v С-С , ⁸ СН
			1363	1315	$^{\delta}$ CH, skel def
1489	1493	1491	1491		$^{\delta}$ CH, skel def
				1588	^δ CH, skel def
1591	1542		1586		^δ CH. skel def
	-		1616	1623	$^{\delta}$ CH skel def
			1696	10_0	
	1639	1628			$^{\delta}$ H-O-H band of water
	2119				Sym v O-H of clay and water
	3504	3677			Asym ^v O-H of clay

Table S2. Observed Raman and IR vibrational modes of dibenzo-p-dioxin (DD) in a polar solvents and in DD-Cs-saponite complex

 \ddagger = CHCl₃ § =CCl₄, v = stretching, v = stretching, δ =bending, Skel= skeleton, def= deformation, Sym= symmetric Asym= asymmetric, oop= out of plane