Processes	Temp	$\alpha_{\rm HN}$	$\beta_{\rm HN}$	$f_0(Hz)$	f _m (Hz)	Δε
	(K)					
α - process	152.8	0.066	0.733	1.28 x 10 ⁻²	1.68 x 10 ⁻²	19.71
	165.1	0.047	0.689	$1.77 \ge 10^{\circ}$	2.42×10^{0}	19.85
	180.8	0.074	0.718	1.02×10^2	$1.39 \ge 10^2$	20.23
	199.9	0.032	0.711	2.27×10^3	3.02×10^3	19.21
	224.8	0.021	0.737	4.93×10^4	6.31×10^4	18.35
	240.2	0.008	0.714	2.21×10^5	2.89×10^5	18.03
	260.5	0.000	0.714	1.33×10^6	1.73×10^{6}	17.19
β- process	152.8	0.555	1.00	3.31×10^{1}	3.31×10^{1}	0.582
1	158.4	0.507	1.00	9.55×10^{1}	9.55×10^{1}	0.501
γ - process	100.7	0.840	1.00	1.39×10^{1}	1.39×10^{1}	0.2499
	105.9	0.828	1.00	1.27×10^2	1.27×10^2	0.2510
	110.6	0.817	1.00	5.68×10^2	5.68×10^2	0.2562
	115.0	0.797	1.00	2.65×10^3	2.65×10^3	0.2516
	120.3	0.764	1.00	$1.59 \ge 10^4$	$1.59 \ge 10^4$	0.2342
	125.2	0.752	1.00	5.18×10^4	5.18×10^4	0.2434
	130.5	0.728	1.00	1.35×10^5	$1.35 \ge 10^5$	0.2977

SIT₁: Details of the parameters of Eq. 2 for various relaxation processes shown in SIF₂ (in CHXOL + CHPOL, $x_m = 0.25$).

Temp	$\alpha_{\rm HN}$	$\beta_{\rm HN}$	f ₀ (Hz)	f _m (Hz)	Δε
(K)					
156.5	0.152	0.830	4.81 x 10 ⁻²	5.80 x 10 ⁻¹	6.32
168.8	0.163	0.855	2.50×10^2	2.92×10^{0}	8.33
187.7	0.132	0.799	9.10×10^{1}	1.12×10^2	10.47
200.4	0.104	0.783	3.18×10^3	3.99×10^3	10.50
224.9	0.049	0.714	9.38×10^4	$1.24 \text{ x } 10^5$	10.05
235.4	0.021	0.604	2.92×10^5	4.39×10^5	10.27
156.5	0.631	1.00	2.65×10^{1}	2.65×10^{1}	0.220
105.4	0.658	1.00	$1.59 \ge 10^4$	$1.59 \ge 10^4$	0.102
110.5	0.621	1.00	5.20×10^4	5.19 x 10 ⁴	0.101
115.9	0.586	1.00	$1.54 \ge 10^5$	$1.54 \ge 10^5$	0.099
120.2	0.563	1.00	3.19×10^5	3.18×10^5	0.099
125.8	0.577	1.00	$1.41 \ge 10^6$	$1.40 \ge 10^6$	0.116
	Temp(K)156.5168.8187.7200.4224.9235.4156.5105.4110.5115.9120.2125.8	Temp (K)α _{HN} 156.50.152168.80.163187.70.132200.40.104224.90.049235.40.021156.50.631105.40.658110.50.621115.90.586120.20.563125.80.577	Temp (K)α _{HN} ββ _{HN} 156.50.1520.830168.80.1630.855187.70.1320.799200.40.1040.783224.90.0490.714235.40.0210.604156.50.6311.00105.40.6581.00110.50.5861.00120.20.5631.00125.80.5771.00	Temp (K)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

SIT₂: Details of the parameters of Eq. 2 for the fits shown in SIF₆ (in NPOL + NPGOL, $x_m = 0.13$).

Process	Temp	$\alpha_{\rm HN}$	$\beta_{\rm HN}$	$f_0(Hz)$	f _m (Hz)	Δε
	(K)					
	185.6	0.406	0.943	5.55×10^{1}	$6.07 \text{ x } 10^1$	1.565
α'	190.1	0.405	1.000	$1.99 \ge 10^2$	$1.99 \ge 10^2$	1.498
~	195.2	0.355	1.000	5.90×10^2	5.90×10^2	1.355
	200.8	0.322	1.000	$1.77 \ge 10^3$	$1.77 \ge 10^3$	1.239
	135.4	0.180	0.657	2.25 x 10 ⁻²	3.49 x 10 ⁻²	11.03
α	150.5	0.140	0.586	2.76×10^{1}	$4.66 \ge 10^1$	11.51
<i>v</i>	165.4	0.146	0.599	3.98×10^3	6.62×10^3	11.96
	185.6	0.045	0.388	$1.75 \ge 10^5$	3.92×10^5	12.56
	195.2	0.011	0.299	5.54×10^5	$1.49 \ge 10^6$	13.82
	100.8	0.505	0.232	1.93×10^{1}	3.24×10^2	0.284
ß	105.5	0.634	0.350	$5.17 \ge 10^1$	$8.48 \ge 10^2$	0.336
Р	110.1	0.680	0.421	2.31×10^2	3.26×10^3	0.389
	115.1	0.705	0.501	$1.14 \ge 10^3$	$1.14 \ge 10^4$	0.422
	120.4	0.735	0.738	$1.59 \ge 10^4$	$4.99 \ge 10^4$	0.440
	125.0	0.759	1.000	$1.67 \ge 10^5$	$1.67 \ge 10^5$	0.481

SIT₃. Details of parameters of Eq. 2 for the fits shown in SIF₇ (in CNCH + CHC, Xm = 0.125).

 SIF_1

 SIF_4

T (K)

 SIF_5

 SIF_6

log f (Hz)

Supplementary Figure Captions

SIF₁. CHXOL + CHPOL binary system: Variation of log ε'' with temperature at a test frequency of 1 kHz, for different concentrations of CHPOL. Note that the presence of a smaller process designated as β - process along with the α - and γ - processes. It may be noted that the α' -process present³⁸ in pure CHXOL is not resolvable in this binary system.

SIF₂. Double logarithmic plot of ε'' vs. frequency at different temperatures for various relaxation processes of CHXOL + CHPOL binary system with $x_m = 0.25$. (a) α -, & β - process (b) γ -process. The solid line corresponds to the HN- equation (2) for the α - process, dashed line corresponds to the CC-fit for the resolved β -process in panel (a) and solid line corresponds to the CC-fit for β -process in panel (b). The rise in the loss at frequencies above 10 kHz in (a) is due to the β -process. The parameters of eq. 2 for the α - & γ -processes are given in supplementary Table (SIT₁).

SIF₃. Variation of various physical parameters of CHXOL + CHPOL binary system with mole fraction (x_m) of second component i .e. CHPOL: (a) T_g(D), [where T_g(D) is the temperature at which the f_m value is 10⁻³ Hz]; (b) log f_m & (c) dielectric strength ($\Delta \epsilon$) at three fixed temperatures. The thick lines are fits to eq. 5.

SIF₄. NPOL + NPGOL binary system: Variation of log ε'' with temperature at a test frequency of 1 kHz, for different concentrations of NPGOL. Note that the presence of a smaller process designated as β - process along with the α - and γ - processes.

SIF₅. Behavior of NPOL + NPGOL binary system for $x_m = 0.13$. Temperature variation of the (a) real and (b) imaginary parts of the complex permittivity at various test frequencies. The phase designated as S_1 is the solid solution.

SIF₆. Double logarithmic plot of ε'' vs. frequency at different temperatures for various relaxation processes of NPOL + NPGOL binary system with $x_m = 0.13$. (a) α -, & β -process (b) γ -process. The solid line corresponds to the HN- equation (2) for the α -process, dashed line corresponds to the CC-fit for the resolved β -process in panel (a) and solid line corresponds to the CC-fit for γ -process in panel (b). The rise in the loss at frequencies above 10 kHz in (a) is due to the γ -process. The parameters of eq. 2 for the α - & γ -processes are given in SIT₂.

SIF₇. Double logarithmic plot of ε'' vs. frequency of CNCH + CHC binary system for different temperatures with $x_m = 0.125$: (a) α - process and (b) β - process. The dashed dotted line in panel (a) and solid line in panel (b) corresponds to the HN-parameters shown in SIT₃. For T = 185.6 K, the solid line represents the typical ansatz (HN + CC) fit to resolve the α' - and α - processes.