On the existence of the H3 tautomer of adenine in aqueous solution. Rationalizations based on hybrid quantum mechanics/molecular mechanics predictions

Supporting Information

Kęstutis Aidas, Kurt V. Mikkelsen Department of Chemistry, H. C. Ørsted Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark

Jacob Kongsted* Department of Physics and Chemistry, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark

e-mail: kongsted@ifk.sdu.dk

Figure 1: The atom labeling in adenine. The H_t proton is bonded to N9, N7 and N3 in the H9-A, H7-A and H3-A tautomers of adenine, respectively.

Atom	х	У	Z
		C_s	
N1	1.643187	-1.123608	0.000000
N3	-0.636609	-1.783016	0.000000
N6'	2.341180	1.062407	0.000000
N7	-0.640229	1.763829	0.000000
N9	-2.126024	0.124109	0.000000
C2	0.654169	-2.004565	0.000000
C4	-0.910883	-0.487128	0.000000
C5	0.00000	0.538649	0.000000
C6	1.346285	0.166102	0.000000
C8	-1.882508	1.469813	0.000000
H2	0.958133	-3.034439	0.000000
$H6_a$	3.278106	0.745200	0.000000
${ m H6}_b$	2.142535	2.031091	0.000000
H8	-2.682938	2.179419	0.000000
H_{t}	-3.008751	-0.324548	0.000000
		C_1	
N1	1.922501	0.515156	0.001616
N3	-0.009480	1.893201	0.000128
N6'	1.857147	-1.779705	-0.022245
N7	-1.188532	-1.451767	0.000180
N9	-2.046935	0.587808	0.000657
C2	1.281636	1.674489	0.001942
C4	-0.697986	0.761588	-0.000995
C5	-0.178487	-0.508196	-0.002324
C6	1.214928	-0.602948	-0.003314
C8	-2.263075	-0.762516	0.001482
H2	1.909843	2.545298	0.004897
${ m H6}_a$	2.842007	-1.787258	0.073528
${ m H6}_b$	1.347647	-2.622252	0.073268
H8	-3.253388	-1.166711	0.003436
H_{t}	-2.731115	1.303567	0.001768

Table 1: The xyz coordinates (in Å) of the H9-A tautomer of a denine optimized using MP2/aug-cc-pVTZ method in C_s and C₁ symmetries.

Atom у \mathbf{Z} х H9-A $\overline{0.541445}$ N11.9368760.0015131.921972N3-0.0451910.001090 N6' 1.892853-1.780707-0.043620N7-1.150632-1.485898-0.001906N9-2.0766970.5623560.002280 C21.7146931.2721590.001733C4-0.7228130.762913-0.000125C5-0.170166-0.521506-0.002723C61.235136-0.603204-0.002392C8-2.279356-0.7836630.001133 H21.897873 2.6028140.0047102.891080-1.7755870.138241 $H6_a$ $H6_b$ 1.382771-2.6352910.148518H8-3.275573-1.2079610.002725-2.8063691.2864530.004553 H_t H7-A N11.947906 0.483621-0.0008760.0221391.938817N30.003703N6' 1.826027-1.835810-0.053498-1.322408N7-1.257130-0.004404N9-2.1048680.7564670.004414C21.3264621.684450-0.000278C4-0.7301360.8185590.003809C5-0.188522-0.474228-0.000554C61.208139 -0.630618-0.001178C8-2.372984-0.540389-0.001206H21.9895052.545067-0.000227-1.8431652.8217400.148231 $H6_a$ $H6_b$ 1.309680-2.6661700.218805-0.976122H8-3.364322-0.003337-1.252881-2.351071-0.012396 \mathbf{H}_t H3-A N1 1.934225-0.0005380.4586650.000460 N30.0161861.832656-1.845644N6' 1.802264-0.001257N7-1.230743-1.469870-0.000233N9-2.1386670.6662420.000270 C21.3428231.639507-0.000113C4-0.7965250.7389280.000277-0.546885C5-0.226146-0.000173C61.172437-0.668427-0.000282C8-2.331528-0.684758-0.000302H21.9555652.535669-0.000079 $H6_a$ 2.816410-1.8761540.005037-2.710927 $H6_b$ 1.2745500.007432H8-3.330270-1.105462-0.000495 H_t -0.3654792.7923370.000758

Table 2: The xyz coordinates (in Å) of the H9-A, H7-A and H3-A tautomers of adenine fully optimized using MP2/aug-cc-pVTZ/PCM method in aqueous solution.

Table 3: Absolute ¹⁵N NMR isotropic shielding constants of H9-A in vacuum (MP2/aug-cc-pVTZ optimized C₁ geometry in vacuum, see Table 1) calculated using KT3 functional and different basis sets. Also shown are the corresponding relative ¹⁵N NMR spectra with respect to σ^{N7} . t-dzp and t-tzp denote Turbomole-DZP and Turbomole-TZP basis sets, respectively, whereas (a)(c)xz, x=d,t,q, denote (aug-)cc-p(C)VXZ basis sets, respectively. See Figure 1 for atom labeling.

very, be	se r igui	I IOI a	tom ab	umg.							
	t-dzp	t-tzp	dz	cdz	adz	tz	ctz	atz	qz	cqz	aqz
σ^{N1}	46.0	27.1	42.0	34.0	41.2	29.1	21.4	30.8	25.5	18.9	24.4
σ^{N3}	52.3	34.0	48.1	40.2	49.2	36.1	28.3	38.6	32.7	26.4	32.2
$\sigma^{N6'}$	197.4	189.6	197.1	193.6	196.0	189.0	185.9	188.3	186.6	183.7	185.6
σ^{N7}	41.0	20.0	37.3	28.4	35.9	22.3	14.1	24.9	18.9	12.2	18.2
σ^{N9}	124.8	111.6	123.5	118.2	122.6	112.8	107.4	112.5	109.4	104.8	108.3
δ^{N1}	5.0	7.1	4.7	5.6	5.3	6.8	7.3	5.9	6.6	6.7	6.2
δ^{N3}	11.3	14.0	10.8	11.8	13.3	13.8	14.2	13.7	13.8	14.2	14.0
$\delta^{N6'}$	156.4	169.6	159.8	165.2	160.1	166.7	171.8	163.4	167.7	161.5	167.4
δ^{N7}	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
δ^{N9}	83.8	91.6	86.2	89.8	86.7	93.3	93.3	87.6	90.5	92.6	90.1

Table 4: B97-2 based isotropic ${}^{2}J$ NMR spin-spin coupling constants of the MP2/aug-cc-pVTZ optimized C₁ geometry of H9-A (see Table 1) for different basis sets. atz-J denotes aug-cc-pVTZ-J basis set. See Figure 1 for atom labeling.

	Huz- $IIsu2$	Huz-IIIsu3	Huz-IVsu4	atz-J
$^{2}J(\text{N1-H11})$	-16.20	-16.35	-16.43	-16.57
${}^{2}J(\text{N2-H11})$	-16.33	-16.58	-16.64	-16.78
$^{2}J(M4-H15)$	-12.58	-12.80	-12.91	-12.97
$^{2}J(\text{N5-H15})$	-9.32	-9.53	-9.59	-9.72

Table 5: CAM-B3LYP based vertical excitation energies, E, in eV and dimensionless oscillator strengths in length gauge, f, of H9-A tautomer geometry-optimized at the MP2/aug-cc-pVTZ level in C_s symmetry (see Table 1). Basis sets used are the Dunning-type correlation-consistent basis sets (d-)(aug-)cc-pVXZ, X = D,T. The three top rows contain data for the three lowest excitation energies in H9-A, and the fourth row refers to the first subsequent intense $\pi \to \pi^*$ transition.

, mot babbel action meetings // // erandereterin											
	cc-pVDZ		aug-cc-pVDZ		daug	daug-cc-pVDZ		aug-cc-pVTZ		daug-cc-pVTZ	
	E	f	E	f	E	f	E	f	E	f	
$n \to \pi^*$	5.463	0.0002	5.438	0.0007	5.43	6 - 0.0008	5.438	0.0007	5.436	0.0007	
$\pi \to \pi^*$	5.676	0.17	5.490	0.28	5.47	4 0.28	5.483	0.28	5.476	0.27	
$\pi \to \pi^*$	5.792	0.12	5.617	0.01	5.60	7 0.01	5.613	0.01	5.609	0.01	
$\pi \to \pi^*$	6.978	0.40	6.663	0.41	6.62	7 0.38	6.645	0.39	6.632	0.38	

	H9-	A	H7-	A	H3-	A		
Atom	q	α	q	α	q	α	ε	σ
N1	-0.72593	1.1731	-0.71794	1.1854	-0.63076	1.1812	0.17	3.25
N3	-0.74900	1.2763	-0.76100	1.2666	-0.57686	1.1452	0.17	3.25
N6'	-0.57561	1.1197	-0.59374	1.1112	-0.54607	1.1090	0.17	3.25
N7	-0.55780	1.1841	-0.45018	1.0250	-0.69986	1.2286	0.17	3.25
N9	-0.48080	1.0217	-0.65105	1.1931	-0.76462	1.2653	0.17	3.25
C2	0.58921	1.3193	0.58673	1.3030	0.41210	1.3448	0.08	3.50
C4	0.60762	1.3398	0.85975	1.3381	0.62999	1.4187	0.08	3.50
C5	0.02634	1.4050	-0.20247	1.4053	0.06547	1.5274	0.08	3.50
C6	0.55651	1.5335	0.57757	1.5105	0.51503	1.5984	0.08	3.50
C8	0.30453	1.2432	0.34929	1.2266	0.55137	1.3030	0.08	3.50
H2	0.01494	0.4374	0.01429	0.4363	0.06090	0.4036	0.05	2.50
$H6_a$	0.29728	0.3587	0.29868	0.3567	0.29555	0.3494	0.00	0.00
${ m H6}_b$	0.27534	0.3025	0.26785	0.3199	0.29651	0.2851	0.00	0.00
H8	0.07478	0.4307	0.06808	0.4240	0.01644	0.4455	0.05	2.50
H_t	0.34259	0.3416	0.35414	0.3243	0.37481	0.3306	0.00	0.00

Table 6: Force field parameters for the H9-A, H7-A and H3-A tautomers of adenine used in the MD simulations. Partial point charges, q, are given in au, isotropic polarizabilites, α , in Å³, Lennard-Jones parameters ε and σ in kcal/mol and Å, respectively. See Figure 1 for atom labeling.

Table 7: Force field parameters for water molecules used in the MD simulations and QM/MM calculations. Partial point charges, q, are given in au, isotropic polarizabilites, α , in Å³, Lennard-Jones parameters ε and σ in kcal/mol and Å, respectively.

Atom	q	α	ε	σ
0	-0.6690	1.440	0.1555	3.166
Н	0.3345	0.000	0.0000	0.000