Supplementary Information

Gas-Surface Energy Exchange and Thermal Accommodation in Collisions of $CO₂$

and Ar with Methyl, Hydroxyl, and Perfluorinated Self-Assembled Monolayers

Jessica W. Lu, William A. Alexander and John R. Morris Department of Chemistry, Virginia Tech, Blacksburg Virginia, 24060

Potential Energy Wells Depths. Determination of the minimum energy on the gas/surface potential energy surface can aid in understanding of energy exchange and accommodation and can be facilitated through *ab initio* electronic structure calculations. In place of a simulated surface, the calculations here used CO_2 and Ar and CH₄, CH₃OH, and CF₄ in an effort to approximately evaluate a trend for minimum well depths for Ar and $CO₂$ at a distance from the CH_{3} -, OH-, and F-SAM surface.

Second-order Möller-Plesset perturbation theory (MP2) combined with Dunning's double-ξ correlation-consistent basis set augmented with diffuse functions (aug-cc-pVDZ) was used to calculate minimum energy wells for Ar and CO_2 interacting with CH_4 , CH_3OH , and CF_4 , small molecule analogues of the terminal groups of the $CH₃-SAM$, OH-SAM, and F-SAM, respectively. Similar calculations have been previously performed for Ar with CH_4 , 1CF_4 , and $CH₃OH²$ and $CO₂$ with $CF₄³$. The motivation for the basic reproduction of these calculations here is two-fold: to compute similar values for $CO₂$, and to focus on the trends rather than absolute values. Corrections for basis-set superposition error (BSSE) were done by applying the counterpoise method.⁴ The Gaussian03 suite of programs was used to perform all calculations for depths of potential wells and well-minimum approach distances.⁵ The minimum well depth of the approach calculated for $Ar - CH_4$ is found to be -1.18 kJ/mol, when Ar approaches the carbon on the face of the methane molecule along one of the C-H bonds. $CO₂$ interactions were

calculated for the molecule approaching the methane face with its CO bonds perpendicular to the C-H bond. The interactions of Ar and $CO₂$ with $CF₄$ were calculated with analogous approach geometries to those of methane.

The geometry used for the $Ar - CH₃OH$ calculations involves Ar approaching methanol at the O-atom at an angle that bisects the H-O-C angle. The minimum well depth for $CO₂$ and CH₃OH shows the C-atom approaching the O-atom as to bisect the H-O-C angle, with each of the C-O bonds on CO_2 positioned perpendicular to the axis that intersects the C-atom of CO_2 and O-atom of CH₃OH; here, CO_2 is coplanar to H-O-C on CH₃OH. The calculated well depths are listed in Table 3 of the article.

Ar interaction with the CF_4 molecule results in a well depth of -1.41 kJ/mol. Well depths for Ar with CH_4 and CH_3OH are -1.18 and -1.08 kJ/mol, making all Ar wells at these approaches approximately the same. CO_2 , in contrast, forms deeper wells with CH_4 and CH_3OH at these approach geometries, -2.90 kJ/mol and -11.95 kJ/mol respectively. As approximated by the potential well depth formed between CO_2 and CF_4 , the strength of the CO_2 interaction with the F-SAM is about as strong as the well depth formed between $CO₂$ and $CH₄$, as approximated by the potential well depth formed between $CO₂$ and $CF₄$.

REFERENCES

- (S1) Alexander, W. A.; Troya, D. *J. Phys. Chem. A* 2006, *110*, 10834-10843.
- (S2) Tasic, U.; Alexeev, Y.; Vayner, G.; Crawford, T. D.; Windus, T. L.; Hase, W. L. *Phys. Chem. Chem. Phys.* 2006, *8*.
- (S3) Martinez-Nunez, E.; Rahaman, A.; Hase, W. L. *J. Phys. Chem. C* 2007, *111*, 354-364.
- (S4) Boys, S. F.; Bernardi, F. *Mol. Phys.* 2002, *100*, 65.
- (S5) Frisch, M. J.; Rucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalamani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.;
	- Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.;
	- Pople, J. A.; Gaussian Inc: Wallingford, CT, 2004.

TABLE S1.

