Supporting Information

Figure S1. TGA results obtained for OCP.

Figure S2. TGA results obtained for succinic acid.

Figure S3. FT-IR spectra of OCP (upper trace) and OCPS (lower trace).

Figure S4. ${ }^{31} \mathrm{P}-{ }^{31}$ P DARR measurements with a mixing time of 300 ms . The dashed lines show the chemical shift of the HAp impurity phase.

Determination of the proportionality constants between the van Vleck's second moment and the experimental DQ build-up rates for OCP

The proportionality constants between the van Vleck's second moment and the experimental DQ build-up rates were determined for OCP in the following way. Firstly, we made an assignment of the peak at -0.2 ppm . Then we calculated the corresponding M_{2} values based on the X-ray crystal structure. Because there are three possible assignments of the peak at -0.2 ppm for OCP , viz. $\mathrm{P} 5 / \mathrm{P} 6, \mathrm{P} 4 / \mathrm{P} 5 / \mathrm{P} 6$, and $\mathrm{P} 2 / \mathrm{P} 5 / \mathrm{P} 6$, we had calculated three sets of proportionality constants as shown in Table S1 to S3.

Table S1. Proportionality constants between the van Vleck's second moment and the experimental DQ build-up rates determined for OCP. The signal at -0.2 ppm is assigned to P 5 and P 6 .

Correlation peaks $(\mathrm{ppm}, \mathrm{ppm})$	Assignments	A	Calculated M_{2} $\left(\times 10^{6}\right.$ $\left.\mathrm{rad}^{2} \mathrm{sec}^{-2}\right)$	$\boldsymbol{M}_{\mathbf{2}} / \boldsymbol{A}$ $\left(\times 10^{6}\right.$ $\left.\mathrm{rad}^{2} \mathrm{sec}^{-2}\right)$
$3.7,-0.2$	$\mathrm{P} 1-\mathrm{P} 5 / 6$	0.926	0.347	$\mathbf{0 . 3 7 5}$
$3.3,-0.2$	$\mathrm{P} 2-\mathrm{P} 5 / 6$	0.840	0.696	$\mathbf{0 . 8 2 8}$
$2.0,-0.2$	$\mathrm{P} 3-\mathrm{P} 5 / 6$	0.710	1.076	$\mathbf{1 . 5 1 6}$
$-0.2,-0.2$	$\mathrm{P} 5 / 6-\mathrm{P} 5 / 6$	0.639	2.1082	$\mathbf{3 . 3 0 1}$
$3.7,3.7$	$\mathrm{P} 1-\mathrm{P} 1$	1.148	3.222	$\mathbf{2 . 8 0 6}$
$3.7,2.0$	$\mathrm{P} 1-\mathrm{P} 3$	0.819	0.581	$\mathbf{0 . 7 1 0}$

Table S2. Proportionality constants between the van Vleck's second moment and the experimental DQ build-up rates determined for OCP. The signal at -0.2 ppm is assigned to $\mathrm{P} 4, \mathrm{P} 5$, and P 6 .

Correlation peaks $(\mathrm{ppm}, \mathrm{ppm})$	Assignments	A	Calculated M_{2} $\left(\times 10^{6}\right.$	$\boldsymbol{M}_{2} / \boldsymbol{A}$ $\left(\times 10^{6}\right.$ $\left.\mathrm{rad}^{2} \mathrm{sec}^{-2}\right)$
$3.7,-0.2$	$\mathrm{P} 1-\mathrm{P} 4 / 5 / 6$	0.926	0.894	$\mathbf{0 . 9 6 6}$
$3.3,-0.2$	$\mathrm{P} 2-\mathrm{P} 4 / 5 / 6$	0.840	0.789	$\mathbf{0 . 9 3 9}$
$2.0,-0.2$	$\mathrm{P} 3-\mathrm{P} 4 / 5 / 6$	0.710	1.100	$\mathbf{1 . 5 5 0}$
$-0.2,-0.2$	$\mathrm{P} 4 / 5 / 6-\mathrm{P} 4 / 5 / 6$	0.639	1.405	$\mathbf{2 . 2 0 0}$
$3.7,3.7$	$\mathrm{P} 1-\mathrm{P} 1$	1.148	3.222	$\mathbf{2 . 8 0 6}$
$3.7,2.0$	$\mathrm{P} 1-\mathrm{P} 3$	0.819	0.581	$\mathbf{0 . 7 1 0}$

Table S3. Proportionality constants between the van Vleck's second moment and the experimental $D Q$ build-up rates determined for OCP. The signal at -0.2 ppm is assigned to P 2 , P 5 , and P 6 .

Correlation peaks $(\mathrm{ppm}, \mathrm{ppm})$	Assignments	A	Calculated M_{2} $\left(\times 10^{6}\right.$	$\boldsymbol{M}_{2} / \boldsymbol{A}$ $\left(\times 10^{6}\right.$ $\left.\mathrm{rad}^{2} \mathrm{sec}^{-2}\right)$

Table S4. The calculated M_{2} of OCPS based on the assignment of $P_{A} \rightarrow P 6$ and $\mathrm{P}_{\mathrm{B}} \rightarrow \mathrm{P} 5$.
$\left.\begin{array}{|c|c|c|c|c|}\hline \text { Site } & \text { Assignment } & A & \begin{array}{c}\text { Extracted } M_{2} \text { of } \\ \text { oCPS }\end{array} \\ \hline \text { P1- } P_{A} & \text { P1-P6 } & 0.706 & \begin{array}{c}\text { Calculated } M_{2} \text { of } \\ \text { oCP }\end{array} \\ \hline P 1-P_{B} & \text { P1-P5 } & 0.490 & 0.682 \\ \left(\times 10^{6} \mathrm{rad}^{2} \mathrm{sec}^{-2}\right)\end{array}\right]$
${ }^{+}$The proportionality constants (M_{2} / A) were taken from Table S2. ${ }^{\ddagger}$ The M_{2} values were calculated based on the X-ray crystal structure.

Table S5. The calculated M_{2} of OCPS based on the assignment of $P_{A} \rightarrow P 5$ and $\mathrm{P}_{\mathrm{B}} \rightarrow \mathrm{P} 6$.

Site	Assignment	A	Extracted M_{2} of OCPS ${ }^{\dagger}$ $\left(\times 10^{6} \mathrm{rad}^{2} \mathrm{sec}^{-2}\right)$	$\begin{gathered} \text { Calculated } M_{2} \text { of } \\ \text { OCP }^{\ddagger} \\ \left(\times 10^{6} \mathrm{rad}^{2} \mathrm{sec}^{-2}\right) \end{gathered}$
$\mathrm{P} 1-\mathrm{P}_{\text {A }}$	P1-P5	0.706	0.682	0.0847
$\mathrm{P} 1-\mathrm{P}_{\mathrm{B}}$	P1-P6	0.490	0.473	0.60889
P3- $\mathrm{P}_{\text {A }}$	P3-P5	0.599	0.929	0.5623
P3- $\mathrm{P}_{\text {B }}$	P3-P6	0.346	0.537	1.5891
$\mathrm{P}_{\mathrm{A}}-\mathrm{P}_{\mathrm{B}}$	P5-P6	0.397	0.873	1.3509

${ }^{\dagger}$ The proportionality constants (M_{2} / A) were taken from Table S2. ${ }^{\ddagger}$ The M_{2} values were calculated based on the X-ray crystal structure.

As shown in the crystal structure of OCP, P 4 is more likely to react with water to form the species of $\mathrm{HPO}_{4}{ }^{2-}$. Therefore, in the main text of our manuscript, we chose to employ the entries of Table S2 to calculate the M_{2} values of OCPS. Nevertheless, the same conclusion shown in Figure 7 was obtained when we employed the entries of Table S1 or S3.

Determination of the chemical formula of OCPS and the overall Ca / P ratio

Table S6. Summary of the ${ }^{31} \mathrm{P}$ NMR spin counting data.

	HAp	OCP	OCPS
P-31 signal integral (a.u.)	1.0	2.3	$1.1^{\text {a }}$
Sample mass (mg)	37.9	26.9	15.0
Mw (g/mol)	1004.0	982.6	--
Number of scan	4	12	12
\# of P-31 per formula unit	6	0.16426	
\# of mole of P-31 (10³)	0.22649	1.16684	
Integral per scan per mole of P-31 spins $\left(10^{3}\right)$	1.1038		

The average integral per scan per mole of $\mathrm{P}-31$ spins was equal to 1.135×10^{3}, from which the number of mole of P-31 spins per unit mg of OCPS was calculated as $1.1 / 12 /\left(1.135 \times 10^{3}\right) / 15=\mathbf{5 . 3 8} \times \mathbf{1 0}^{-6}$.

By comparing the ${ }^{13} \mathrm{C}$ Bloch decay spectra of OCPS and L-alanine, the number of mole of succinate ions per unit mg of OCPS was found to be $\mathbf{5 . 4 9} \times \mathbf{1 0}^{\mathbf{- 7}}$.

Assuming that the formula of OCPS is $\mathrm{Ca}_{8-\mathrm{y} / 2}\left(\mathrm{HPO}_{4}\right)_{2-x}\left(\mathrm{PO}_{4}\right)_{4-\mathrm{y}}(\text { succinate })_{x+y}: \mathrm{zH}_{2} \mathrm{O}$:
$5.49 \times 10^{-7}: 5.38 \times 10^{-6}=(x+y):[6-(x+y)]$
$\Rightarrow x+y=\mathbf{0 . 5 6}$

From the deconvolution data, the ratio of the integrals of $\mathrm{HPO}_{4}{ }^{2-}: \mathrm{PO}_{4}{ }^{3-}$ is calculated as
$\frac{1.38}{2.72}=\frac{2-x}{4-y}$
$\Rightarrow x=\mathbf{0 . 1 7} \quad$ and $\quad y=\mathbf{0 . 3 9}$
Therefore, the molecular formula of OCPS is found to be:
$\mathbf{C a}_{7.81}\left(\mathbf{H P O}_{4}\right)_{1.82}\left(\mathrm{PO}_{4}\right)_{3.61}(\text { succinate })_{0.56} \mathbf{z H}_{2} \mathbf{O}$
Hence the amount of Ca^{2+} due to OCPS is calculated as $5.38 \times 10^{-6} \times 7.81 /(1.82+$ $3.61)=7.74 \times \mathbf{1 0}^{-6}$.

Based on ${ }^{31} \mathrm{P}$ integral ratio of the HAp (impurity phase) and OCPS, the amount of ${ }^{31} \mathrm{P}$ due to HAp is calculated as $5.38 \times 10^{-6} \times 0.64 / 4.10=\mathbf{8 . 4 0} \times \mathbf{1 0}^{-7}$.
Assuming that the HAp phase has a perfect stoichiometry, the amount of Ca ions due to HAp is then calculated as $8.40 \times 10^{-7} \times 1.67=\mathbf{1 . 4 0} \times \mathbf{1 0}^{-6}$.

Overall, the Ca / P ratio of our OCPS sample is calculated as

$$
\frac{(7.74+1.40)}{(5.44+0.84)}=\mathbf{1 . 4 6}
$$

