

 $C_{\rm K} = 0.01, C_{\rm Ph} = 0.1, \varepsilon_{KPh} = -0.5$

 $C_{\rm K} = 0.01, C_{\rm Ph} = 0.1, \varepsilon_{KPh} = -0.6$

Figure S1. Endpoint snapshots of simulations of a 64^3 lattice size and either $t = 10^5$ MCS (left) or $t = 10^6$ MCS (right). The lysine (C_K) and phosphate (C_{Ph}) concentrations and the lysine-phosphate interaction strength (ε_{KPh}) for each row of simulation snapshots is shown below. Visually, peptides in snapshots at $t = 10^6$ are more aggregated than at $t = 10^5$, demonstrating that a total of 10^5 time steps is insufficient for system to reach an equilibrium.

 $C_{\rm K} = 0.02, C_{\rm Ph} = 0.1, \varepsilon_{KPh} = -0.5$

 $C_{\rm K} = 0.02, C_{\rm Ph} = 0.1, \varepsilon_{KPh} = -0.6$

Figure S1 continued. Endpoint snapshots of simulations of a 64³ lattice size and either $t = 10^5$ MCS (left) or $t = 10^6$ MCS (right). The lysine (C_K) and phosphate (C_{Ph}) concentrations and the lysine-phosphate interaction strength (ε_{KPh}) for each row is shown on the left. Visually, peptides in snapshots at $t = 10^6$ are more aggregated than at $t = 10^5$, demonstrating that a total of 10^5 time steps is insufficient for system to reach an equilibrium.

 $C_K=0.2,\ \mathcal{E}_{KPh}\ = -0.5$

 $C_K=0.3, \quad \mathcal{E}_{KPh}\ = -0.6$

 $C_K=0.5,\ \mathcal{E}_{KPh}\ =-0.7$

Figure S2. Snapshots of simulations of a 64^3 lattice size and at the end of time step $t = 10^6$ MCS. Simulations do not contain phosphate. The lysine (C_K) concentrations and lysine-phosphate interaction strength (ε_{KPh}) are shown below each snapshot.

Figure S2 continued. Snapshots of simulations of a 64^3 lattice size and at the end of time step t = 10^6 MCS. The lysine (C_K) and phosphate (C_{Ph}) concentrations were 0.01 and 0.1, respectively. The lysine-phosphate interaction strength (ε_{KPh}) is shown below each snapshot.

 $\varepsilon_{KPh} = -0.5$

 $\varepsilon_{KPh} = -0.6$

Figure S2 continued. Snapshots of simulations of a 64^3 lattice size and at the end of time step t = 10^6 MCS. The lysine (C_K) and phosphate (C_{Ph}) concentrations were 0.02 and 0.1, respectively. The lysine-phosphate interaction strength (ε_{KPh}) is shown below each snapshot.

 $\varepsilon_{KPh} = -0.5$

 $\varepsilon_{KPh} = -0.6$

 $\varepsilon_{KPh} = -0.7$

 $\varepsilon_{KPh} = -0.8$

Figure S2 continued. Snapshots of simulations of a 64^3 lattice size and at the end of time step t = 10^6 MCS. The lysine (C_K) and phosphate (C_{Ph}) concentrations were 0.03 and 0.1, respectively. The lysine-phosphate interaction strength (ε_{KPh}) is shown below each snapshot.

 $\varepsilon_{KPh} = -0.5$

 $\varepsilon_{KPh} = -0.6$

Figure S2 continued. Snapshots of simulations of a 64^3 lattice size and at the end of time step t = 10^6 MCS. The lysine (C_K) and phosphate (C_{Ph}) concentrations were 0.05 and 0.1, respectively. The lysine-phosphate interaction strength (ε_{KPh}) is shown below each snapshot.

 $\varepsilon_{KPh} = -0.5$

 $\varepsilon_{KPh} = -0.6$

Figure S2 continued. Snapshots of simulations of a 64^3 lattice size and at the end of time step t = 10^6 MCS. The lysine (C_K) and phosphate (C_{Ph}) concentrations were 0.07 and 0.1, respectively. The lysine-phosphate interaction strength (ε_{KPh}) is shown below each snapshot.