The critical reevaluation of the aromatic/antiaromatic nature of Ti₃(CO)₃: A missed opportunity?

Cina Foroutan-Nejad,^a Shant Shahbazian^b and Parviz Rashidi-Ranjbar^{a*}

a. School of Chemistry, College of Science, University of Tehran, Tehran, Iran. Fax: 0098 21 6649 5291 ; Tel: 0098 21 6111 3301.

b. Department of Chemistry, Faculty of Sciences, Shahid Beheshti University, G.C., Evin, Tehran, Iran. Tel: 0098 21 2990 2883.

Emails:

cina-foroutan@khayam.ut.ac.ir

chemist shant@yahoo.com

ranjbar@khayam.ut.ac.ir

Molecule	BP86/6-311+G(d)	LSDA/6-311+G(d)	
$\left[\operatorname{Sc}_3(\operatorname{CO})_3\right]^+$	Instable	Stable	
Ti ₃ (CO) ₃	Stable	Stable	
$\left[V_3(CO)_3\right]^+$	Stable	Stable	
$[Cr_3(CO)_3]^{2+}$	Instable	Instable	
Ni ₃ (CO) ₃	Stable	Stable	
$[Cu_3(CO)_3]^-$	Stable	Stable	

Table S-1. The stability of the optimized geometries of different species at BP86/6-311+G(d) and
LSDA/6-311+G(d) levels.

Table S-2. NICS_{zz} values of Ti₃(CO)₃ at various distances above the ring plane of Ti₃(CO)₃ at four

Ti ₃ (0	$CO)_3$	6-311+G(d)	6-311+G(2df)	6-311+G(3d2f)
	NICS(0)zz	-120.61	-120.09	-119.78
LSDA	$NICS(0.5)_{zz}$	-81.37	-81.19	-80.81
	NICS(1) _{zz}	-20.83	-20.96	-20.76
	NICS(0)zz	-117.89	-117.22	-116.76
BP86	$NICS(0.5)_{zz}$	-80.31	-80.02	-79.06
	NICS(1) _{zz}	-20.77	-20.82	-20.64
	NICS(0)zz	-132.18	-115.73	-115.13
MPWPW91	$NICS(0.5)_{zz}$	-87.75	-79.0	-78.48
	NICS(1)zz	-15.03	-20.48	-20.26
	NICS(0)zz	-140.85	-138.47	-137.86
B3LYP	$NICS(0.5)_{zz}$	-94.58	-93.04	-92.48
	NICS(1) _{zz}	-18.43	-18.14	-17.91

DFT levels with three basis sets.

Table S-3. $NICS_{zz}$ values of metal carbonyls at various distances above the ring planes of the molecules.

Metal C	arbonyls	$V_{3}(CO)_{3}^{+}$	Ni ₃ (CO) ₃	$Cu_3(CO)_3^-$
LSDA	NICS(0)zz	-238.41	-12.09	-35.82
6-311+G(d)	$NICS(0.5)_{zz}$	-132.63	-9.08	-32.28
	$NICS(1)_{zz}$	-7.72	-4.81	-26.20
BP86	NICS(0)zz	-239.76	-13.99	-33.38
6-311+G(d)	$NICS(0.5)_{zz}$	-135.69	-10.57	-30.09
	$NICS(1)_{zz}$	-8.26	-5.40	-24.45

Table S-4. Detailed dissected CMO-NICS analysis of $Ti_3(CO)_3$: contribution of diamagnetic shielding (σ^{dia}) and contributions of gauge (σ^{gauge}), occupied to occupied ($\sigma^{para,occ,occ}$) and occupied to virtual ($\sigma^{para,occ-vir}$) components of paramagnetic shielding. The main contribution of occupied to virtual component (Occ \rightarrow Vir) for each canonical MO and the total contribution of each canonical MO (NICS_{MO}) are separately presented.

Orbitals	σ^{dia}	σ^{gauge}	σ ^{para,occ,occ}	$\sigma^{\mathrm{para,occ-vir}}$	Occ→Vir	NICS _{MO}
	_					
49	-5.8	2.4	-1.8	-8.8×2	49→61, 62	-40.8
				-10.4×2	49→63, 64	
				3.0	49→other Vir	
50	-5.8	2.4	-1.8	-8.8×2	50→61, 62	-40.8
				-10.4×2	50→63, 64	
				3.0	50→other Vir	
51	-6.2	-4.9	0.0	23.0	51→65	14.4
				2.54	51→other Vir	
52	-0.7	-3.2	0.0	10.1	52→57	10.4
-				1.9×2	52→63, 64	
				0.3	52→other Vir	
53	-0.9	-2.3	0.0	-4.7×2	53→61, 62	-9.8
				2.7	53→other Vir	
54	-0.9	-2.3	0.0	-4.7×2	54→61, 62	-9.8
-				2.7	54→other Vir	

MO 49

Figure S-3. NICS scan plot of V_3^+ , this is evidently similar to that of $V_3(CO)_3^+$ and V_3^- .

Scheme S-1. QTAIM analysis: The detailed results for the four local minima (E stands for

energy, Q for charge and λ for the localization index)

Atoms	Ε	Q	λ
Ti ₁	-849.46216	1.140	18.7
Ti ₂	-849.46227	1.140	18.7
Ti ₃	-849.46195	1.140	18.7
C ₁	-37.73682	-0.036	4.3
C ₂	-37.73618	-0.034	4.3
C ₃	-37.73707	-0.037	4.3
O ₁	-75.73840	-1.102	8.0
O ₂	-75.73849	-1.102	8.0
O ₃	-75.73849`	-1.101	8.0
$E_{Tot} - \Sigma E_{\Omega} = 2.4$	kcal mol ⁻¹ Q _{Tot} - 2	$CQ_{\Omega} = -0.0075 e$	
Delocalization in	ıdex δ (Ti ₁ , x)	δ (C ₁ , x)	

Delocalization mucx	U (11], X)	U (C], A)
Ti ₂	0.82	
Ti ₃	0.82	
C ₁	1.14	
C ₂	0.07	0.07
C ₃	0.74	0.07
O_1	0.19	1.33
O ₂	0.02	0.02
O ₃	0.51	0.06

Atoms	Ε		Q	λ
V ₁	-944.156	542	0.877	19.4
V_2	-944.007	785	0.881	19.3
V_3	-944.006	592	0.879	19.3
C ₁	-37.592	9	0.456	3.9
C ₂	-37.5920)6	0.458	3.9
C ₃	-37.5924	15	0.456	3.9
O ₁	-75.8130)5	-1.004	7.9
O ₂	-75.8129	91	-1.004	7.9
O ₃	-75.81311		-1.004	7.9
$E_{Tot} - \Sigma E_{\Omega} = 91.4$	4 kcal mo	$Q_{Tot} - \Sigma$	$EQ_{\Omega} = 0.0030 e$	
Delocalization ir	ndex	δ (V ₁ , x)	δ (C ₁ , x)	
V_2		1.64		
V_3		1.64		

v ₂	1.04	
V_3	1.64	
C_1	0.95	
C_2	0.60	0.04
C ₃	0.09	0.04
O_1	0.18	1.52
O ₂	0.39	0.03
O ₃	0.04	0.02

Atoms	Ε	Q	λ
Ni ₁	-1508.58718	0.466	25.9
Ni ₂	-1508.58860	0.466	25.9
Ni ₃	-1508.58909	0.466	25.9
C ₁	-37.53540	0.575	3.7
C ₂	-37.53571	0.574	3.7
C ₃	-37.53583	0.574	3.7
O_1	-75.78928	-1.040	7.9
O ₂	-75.78923	-1.040	7.9
O ₃	-75.78951	-1.040	7.9
$E_{Tot} - \Sigma E_{\Omega} = 2$	2.8 kcal mol ⁻¹	$Q_{Tot} - \Sigma Q_{\Omega} = -0.0009e$	

Delocalization index	δ (Ni ₁ , x)	δ (C ₁ , x)
Ni ₂	0.2370	
Ni ₃	0.2370	
C ₁	1.3119	
C ₂	0.0288	0.0168
C ₃	0.6343	0.0168
O_1	0.2211	1.4085
O ₂	0.0142	0.0034
O ₃	0.5808	0.0314

Atoms	Ε		Q	λ
Cu ₁	-1640.8	5824	0.374	27.1
Cu ₂	-1640.8	5480	0.375	27.1
Cu ₃	-1640.8	6742	0.375	27.1
C ₁	-37.5142	22	0.364	3.9
C ₂	-37.5152	24	0.362	3.9
C ₃	-37.5148	81	0.363	3.9
O ₁	-75.728	51	-1.071	8.0
O ₂	-75.728	53	-1.071	8.0
O ₃	-75.728	52	-1.071	8.0
$E_{Tot} - \Sigma E_{\Omega} = 7.0$	kcal mo	$Q_{Tot} - \Sigma$	$\Sigma Q_{\Omega} = 0.0001 \text{ e}$	
Delocalization in	ndex	δ (Cu ₁ , x)	δ (C ₁ , x)	
Cu ₂		0.38		
Cu ₃		0.38		
C ₁		1.01		
C ₂		0.10	0.12	
C ₃		0.54	0.12	
O_1		0.15	1.44	
O ₂		0.06	0.06	

0.35

0.07

03

Scheme S-2. Wiberg Bond Index Data at BP86/6-311+G(d) Computational Level

Italic values in parenthesis are bond lengths.

CO C–O: 2.2999 (*1.140*)

C2

01

The Cartesian coordinates of the optimized geometry (BP86/6-311+G(d)) of the species considered in this paper.

 $Sc_3(CO)_3^+$

SCANDIUM	21.0	0.000000000	1.904856000	0.000000000
SCANDIUM	21.0	-1.649654000	-0.952428000	0.000000000
SCANDIUM	21.0	1.649654000	-0.952428000	0.000000000
CARBON	6.0	-2.095295000	1.089354000	0.000000000
CARBON	6.0	1.991056000	1.269902000	0.000000000
CARBON	6.0	0.104239000	-2.359256000	0.000000000
OXYGEN	8.0	3.039782000	0.598539000	0.000000000
OXYGEN	8.0	-1.001541000	-2.931797000	0.000000000
OXYGEN	8.0	-2.038241000	2.333259000	0.000000000
Ti ₃ (CO) ₃				
TITANIUM	22.0	0.000000000	1.576079000	0.000000000
TITANIUM	22.0	-1.364924000	-0.788039000	0.000000000
TITANIUM	22.0	1.364924000	-0.788039000	0.000000000
CARBON	6.0	-1.992451000	1.044369000	0.000000000
CARBON	6.0	1.900675000	1.203329000	0.000000000
CARBON	6.0	0.091776000	-2.247697000	0.000000000
OXYGEN	8.0	2.985240000	0.563111000	0.000000000
OXYGEN	8.0	-1.004951000	-2.866849000	0.000000000
OXYGEN	8.0	-1.980288000	2.303738000	0.000000000
V ₃ (CO) ₃ ⁺				
CARBON	6.0	-2.036730000	1.045918000	0.000000000
CARBON	6.0	1.924156000	1.240901000	0.000000000
CARBON	6.0	0.112574000	-2.286819000	0.000000000
OXYGEN	8.0	2.964341000	0.650543000	0.000000000
OXYGEN	8.0	-0.918784000	-2.892466000	0.000000000
OXYGEN	8.0	-2.045557000	2.241923000	0.000000000
VANADIUM	23.0	0.000000000	1.315758000	0.000000000
VANADIUM	23.0	-1.139480000	-0.657879000	0.000000000
VANADIUM	23.0	1.139480000	-0.657879000	0.000000000

 $Cr_{3}(CO)_{3}^{2+}$

CARBON	6.0	2.172580000	0.537520000	0.000000000
CARBON	6.0	-0.620784000	-2.150270000	0.000000000
CARBON	6.0	-1.551796000	1.612749000	0.000000000
OXYGEN	8.0	-1.792043000	-2.320984000	0.000000000
OXYGEN	8.0	-1.114010000	2.712446000	0.000000000
OXYGEN	8.0	2.906052000	-0.391463000	0.000000000
CHROMIUM	[24.0	0.502600000	1.280277000	0.000000000
CHROMIUM	[24.0	0.857452000	-1.075403000	0.000000000
CHROMIUM	[24.0	-1.360053000	-0.204874000	0.000000000

Ni₃(CO)₃

CADDOM	60	1 726576000	0 949725000	0.000000000
CARDON	0.0	-1./203/0000	0.848/23000	0.000000000
CARBON	6.0	1.598186000	1.070914000	0.000000000
CARBON	6.0	0.128359000	-1.919692000	0.000000000
OXYGEN	8.0	2.746651000	0.680025000	0.000000000
OXYGEN	8.0	-0.784577000	-2.718676000	0.000000000
OXYGEN	8.0	-1.962212000	2.038800000	0.000000000
NICKEL	28.0	-0.000054000	1.762902000	0.000000000
NICKEL	28.0	1.526841000	-0.881597000	0.000000000
NICKEL	28.0	-1.526618000	-0.881400000	0.000000000

$Cu_3(CO)_3^-$

CARBON	6.0	-1.998126000	0.948390000	0.000000000
CARBON	6.0	1.820393000	1.256233000	0.000000000
CARBON	6.0	0.177733000	-2.204623000	0.000000000
OXYGEN	8.0	2.940472000	0.753288000	0.000000000
OXYGEN	8.0	-0.817869000	-2.923168000	0.000000000
OXYGEN	8.0	-2.122603000	2.169880000	0.000000000
COPPER	29.0	0.000000000	1.383258000	0.000000000
COPPER	29.0	1.197937000	-0.691629000	0.000000000
COPPER	29.0	-1.197937000	-0.691629000	0.000000000