<u>Iuoro 511</u> Total energies of BTBTS (2) neutral, protonaled and comprehend (in natives):									
R	Χ	L <i>c</i> - <i>g</i> - <i>c</i>	$\mathbf{L} t - t - t^{a}$	$LH^+ c - c - c$	\mathbf{LH}^{+} <i>t-t-t</i> ^{b)}	$Eu(NO_3)_3 L$			
Н	Η	-1053.6544	-1053.6718	-1054.0741	-1054.0638	-1930.1810			
Н	^t But	-1210.9223	-1210.9398	-1211.3488	-1211.3394	-2087.4480			
Et	Η	-1368.2181	-1368.2367	-1368.6488	-1368.6397	-2244.7489			
Et	^t But	-1525.4857	-1525.5045	-1525.9226	-1525.9139	-2402.0154			
CyMe ₄	Η	-1680.3353	-1680.3537	-1680.7668	-1680.7571	-2556.8601			
CyMe ₄	^t But	-1837.6030	-1837.6217	-1838.0403	-1838.0313	-2714.1267			

Table S1: Total energies of BTBPs (L) neutral, protonated and complexed (in hartrees).

a): For L *c*-*t*-*c* ($\mathbf{R} = CyMe_4$, $\mathbf{X} = H$), E = -1680.3507 hartrees.

b): For $LH^+ c$ -*t*-*c* (**R** = CyMe₄, **X** = H), E = -1680.7602 hartrees.

Table S2: Total energies of BTPhens (L) neutral, protonated and complexed (in hartrees).

R	Χ	L	\mathbf{LH}^+	$Eu(NO_3)_3 L$
Н	Η	-1129.8871	-1130.3077	-2006.4153
Н	^t But	-1287.1382	-1287.5673	-2163.6719
Et	Η	-1444.4509	-1444.8826	-2320.9807
Et	^t But	-1601.7019	-1602.1411	-2475.2370
CyMe ₄	Η	-1756.5684	-1757.0007	-2633.0943
CyMe ₄	^t But	-1913.8258	-1914.2647	-2790.3508

<u>Table S3:</u> $Eu(NO_3)_3(L)$ complexes with L = BTBP and BTPhen: Optimized distances (in Å) and Mulliken charges of Eu.

		φ	(°) ^{a)}	Eu-N and Eu-O Distances (Å)									Eu Charge (e)		
R	Х	BTBP	BTPhen		ВТВР				BTPhen					BTBP	BTPhen
				N ₁	N_2	N _{3,4}	O _{ax}	O _{eq}	N ₁	N_2	N _{3,4}	O _{ax}	O_{eq}		
Н	Н	-9.4	0.1	2.68	2.68	2.60	2.53	2.44	2.67	2.67	2.62	2.53	2.44	1.35	1.34
$H^{b)}$	$H^{b)}$	-0.2 ^{b)}	$0.2^{b)}$	2.59 ^{b)}	$2.59^{b)}$	2.59 ^{b)}	2.57 ^{b)}	2.50^{b}	2.60^{b}	2.60^{b}	2.62^{b}	2.57 ^{b)}	2.51 ^{b)}	1.34 ^{b)}	1.31 ^{b)}
Н	^t But	-11.2	0.1	2.68	2.66	2.61	2.54	2.45	2.66	2.66	2.60	2.54	2.45	1.34	1.35
Et ^{c)}	Н	-5.7		2.61	2.60	2.60	2.54	2.49							
Et	Н	-4.7	0.1	2.66	2.66	2.58	2.54	2.46	2.67	2.67	2.61	2.54	2.45	1.34	1.33
Et	^t But	-8.1	0.1	2.67	2.65	2.59	2.54	2.46	2.66	2.66	2.60	2.54	2.46	1.34	1.33
CyMe ₄	Н	1.2	0.1	2.66	2.66	2.58	2.54	2.46	2.66	2.66	2.60	2.54	2.46	1.34	1.34
CyMe ₄	^t But	8.6	0.2	2.65	2.67	2.58	2.54	2.47	2.65	2.65	2.59	2.54	2.47	1.34	1.34

a: Defined in Scheme 2.

b: in PCM -water

c: X-ray structure (ref 19).

<u>Figure S1:</u> 3 *cis-cis-cis* (*c-c-c*) CyMe₄BTBP (L) at the Oct-Hex / water interface. Left: initial position. Right: after 2 ns of dynamics.

<u>Figure S2</u>: Snapshots of *c*-*c*-*c* **L** during the dynamics (top) and evolution of orientation (θ angle, see Scheme 3) with time for different initial positions (bottom).

<u>Figure S3:</u> Orientation and snapshots of **L** with c-t-c and t-t-t conformations with time at the Oct-Hex/water interface.

<u>Figure S4:</u> 3 *cis-cis-cis* (*c-c-c*) CyMe₄BTBPH⁺ (LH⁺) at the Oct-Hex / water interface. Left: initial position. Right: after 2 ns of dynamics.

4

<u>Figure S5:</u> Snapshots of *c*-*c*-*c* LH⁺ during the dynamics (top) and evolution of orientation (θ angle, see Scheme 3) with time for different initial positions (bottom).

<u>Figure S6:</u> Orientation (θ angle, see Scheme 3) and snapshots of LH⁺ with *c*-*t*-*c* and *t*-*t*-*t* conformations with time at Oct-Hex/water interface.

<u>Figure S7:</u> Initial positions of concentrated systems with mixed liquids (A and B) and juxtaposed phases (E and F). Solvents shown separately in two lines for clarity: octanol+hexane in green (top) and water in blue (bottom).

5

<u>Figure S8:</u> 30 *c-c-c* CyMe₄BTBP and 30 *c-c-c* CyMe₄BTBPH⁺ in the OCT-HEX/Water mixture. a: Snapshot at the end of the demixing simulations ("oil" phase hidden for clarity). b: Zoom on the interface. c: Density curves of BTBP (red), octanol (green), hexane (orange) and water (blue) and percentage of BTBP within 5Å of the interface (average during the last 0.5 ns of dynamics). d: View of the interface (XY slice with $\Delta Z = 10$ Å).

<u>Figure S9:</u> 30 *t-t-t* CyMe₄BTBP in OCT-HEX/Water solution (DEMIX). *a*: Snapshot at the end of the simulations, ("oil" phase is not shown for clarity). *b*: Density curves of BTBP (red), octanol (green), hexane (orange) and water (blue), average during the last 0.5 ns of dynamics. *c*: View of the interface.

<u>Figure S10</u>: Density curves of systems C (left), E (middle) and F (right), average over the last ns of dynamics (complex in red, neutral BTBP in purple, protonated BTBP in gray, octanol in green, hexane in orange, aqueous phase in blue).

<u>Figure S11:</u> View of the interface (XY slice with $\Delta Z = 10$ Å) of systems C (left), E (middle) and F (right) at the end of the dynamics.

Figure S12: Snapshots of the complexes and their environment in system C.