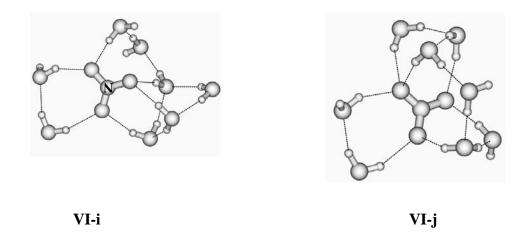
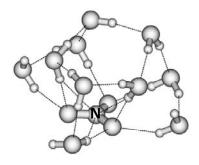
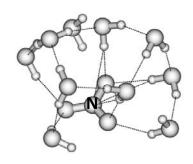
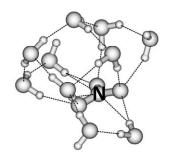

Supporting Information


The fully optimized structures calculated at B3LYP/6-311++G(d,p) level of theory for (I) NO₃-.H₂O; (II) NO₃-.2H₂O; (III) NO₃-.3H₂O; (IV) NO₃-.4H₂O; (V) NO₃-.5H₂O, (VI) NO₃-.8H₂O and (VIII) NO₃-.10H₂O clusters. Marked alphabets in lower case are used to refer different minimum energy conformers for each hydrated cluster size arranged in order of stability showing 'a' as the most stable one. N atoms are shown by marking 'N' on the spheres, the smallest spheres refer to H atoms and the rest corresponds to O atoms in each structure.







VII-a VII-b

VII-c

2. Table 1

Calculated vertical detachment energy in eV of all the conformers of a particular size for NO_3^- . nH_2O (n=1-5, 8 &10) clusters at B3LYP/6-311++G(d,p) level of theory.

Clusters	Conformers	Vertical detachment energy (eV)
NO ₃ H ₂ O	I-A	4.93
	I-b	4.75
NO ₃ ⁻ .2H ₂ O	II-a	5.52
	II-B	5.30
	II-c	5.45
NO ₃ ⁻ .3H ₂ O	III-a	5.66
	III-b	5.55
	III-c	6.00
	III-d	5.73
	III-e	5.95
NO ₃ 4H ₂ O	IV-a	5.86
	IV-b	6.20
	IV-c	6.11
	IV-d	6.50
	IV-e	6.33
	IV-f	6.09

NO ₃ 5H ₂ O	V-a	6.18
	V-b	5.95
	V-c	6.43
	V-d	6.34
	V-e	6.56
	V-f	6.62
	V-g	6.85
	V-h	6.33
	V-I	6.49
NO ₃ ⁻ .8H ₂ O	VI-a	7.00
	VI-b	6.72
	VI-c	6.70
	VI-d	6.81
	VI-e	6.70
	VI-f	6.80
	VI-g	6.75
	VI-h	7.10
	VI-i	6.65
	VI-j	7.09
NO ₃ ⁻ .10H ₂ O	VII-a	7.10
	VII-a	7.04
	VII-a	6.97