Supplementary Information: The Kinetic Model of Complex Formation

Mechanism:

Direct collision induced dissociation (CID)

$$
\begin{equation*}
V_{4} O_{11}^{-}+\mathrm{He} \rightarrow V_{4} O_{10}^{-}+O+\mathrm{He} \quad\left(k_{C I D}\right) \tag{1}
\end{equation*}
$$

Pre-equilibrium of aggregation and irreversible hydrogen transfer:

$$
\begin{align*}
V_{4} O_{11}^{-}+C_{3} H_{6} & \rightleftharpoons\left[V_{4} O_{11} \cdot C_{3} H_{6}\right]^{-} \tag{2}\\
{\left[V_{4} O_{11} \cdot C_{3} H_{6}\right]^{-} } & \rightarrow\left[V_{4} O_{10}(O H) \cdot k_{a d} / k_{d e}\right) \tag{3}\\
\left.H_{5}\right]^{-} & \left(k_{H}\right)
\end{align*}
$$

Definitions:
$\mathrm{A}=V_{4} O_{11}^{-}$;
$\mathrm{C}=\left[V_{4} O_{11} \cdot C_{3} H_{6}\right]^{-} ;$
$\mathrm{D}=\left[V_{4} O_{10}(O H) C_{3} H_{5}\right]^{-} ;$
$\mathrm{E}=V_{4} O_{10}^{-}$;
$\mathrm{B}=\mathrm{C}_{3} \mathrm{H}_{6}$;

Rate Equations:

$$
\begin{align*}
\frac{d[A]}{d t} & =-k_{a d}[A][B]+k_{d e}[C]-k_{C I D}[A][F] \tag{4}\\
\frac{d[B]}{d t} & =0 \tag{5}\\
\frac{d[C]}{d t} & =+k_{a d}[A][B]-k_{d e}[C]-k_{H}[C] \tag{6}\\
\frac{d[D]}{d t} & =+k_{H}[C] \tag{7}\\
\frac{d[E]}{d t} & =+k_{C I D}[A][F] \tag{8}\\
\frac{d[F]}{d t} & =0 \tag{9}
\end{align*}
$$

Constant Gas Pressure:

$$
\begin{array}{ll}
k_{a d}[A][B]=k_{a d}^{\prime}[A] & \text { define: } \quad k_{a d}^{\prime}=k_{a d}[B] \\
k_{a d}[A][F]=k_{C I D}^{\prime}[A] & \text { define: } k_{C I D}^{\prime}=k_{C I D}^{\prime}[F] \tag{11}
\end{array}
$$

Steady-State Appproximation:

$$
\begin{align*}
\frac{d[C]}{d t}=0 & =+k_{a d}[A][B]-k_{a d}[C]-k_{H}[C] \\
\text { with }(10) \rightarrow-k^{\prime} \rightarrow & =+k_{a d}^{\prime}[A]-k_{d e}[C]-k_{H}[C] \\
0 & =k_{a d}^{\prime}[A]-\left(k_{d e}+k_{H}\right)[C] \\
{[C] } & =\left(\frac{k_{a d}^{\prime}}{k_{d e}+k_{H}}\right)[A] \\
{[C] } & =k_{E q}[A] \quad \text { define : } k_{E q}=\left(\frac{k_{a d}^{\prime}}{k_{d e}+k_{H}}\right) \tag{12}
\end{align*}
$$

Educt Behavior, $\left(V_{4} O_{11}^{-}\right)$:

$$
\begin{align*}
\frac{d[A]}{d t} & =-k_{a d}[A][B]+k_{d e}[C]-k_{C I D}[A][F] \\
\text { with }(10),(11) \rightarrow \frac{d[A]}{d t} & =-k_{a d}^{\prime}[A]+k_{d e}[C]-k_{C I D}^{\prime}[A] \\
\text { with }(15) \rightarrow \frac{d[A]}{d t} & =-k_{a d}^{\prime}[A]+k_{d e} k_{E q}[A]-k_{C I D}^{\prime}[A] \\
\frac{d[A]}{d t} & =\left(-k_{a d}^{\prime}+k_{d e} k_{E q}-k_{C I D}^{\prime}\right)[A] \\
\text { define : } k_{\Sigma} & =k_{a d}^{\prime}-k_{d e} k_{E q}+k_{C I D}^{\prime} \tag{13}\\
\int_{\left[A_{0}\right]}^{[A(t)]} \frac{1}{[A]} d[A] & =-k_{\Sigma} \int_{0}^{t} d t \\
{[A(t)] } & =\left[A_{0}\right] e^{-k_{\Sigma} t}
\end{align*}
$$

Complex Product Behavior, $\left[\mathrm{V}_{4} \mathrm{O}_{10}(\mathrm{OH}) \mathrm{C}_{3} \mathrm{H}_{5}\right]^{-}$:

$$
\begin{align*}
\frac{d[D]}{d t} & =+k_{H}[C] \\
\text { with }(12) \rightarrow \frac{d[D]}{d t} & =+k_{H} k_{E q}[A] \\
\text { with }(14) \rightarrow \frac{d[D]}{d t} & =+k_{H} k_{E q}\left(\left[A_{0}\right] e^{-k_{\Sigma} t}\right) \\
\text { define }: k_{C F} & =k_{H} k_{E q} \tag{15}\\
\int_{\left[D_{0}\right]=0}^{[D(t)]} d[D] & =k_{C F}\left[A_{0}\right] \int_{0}^{t} e^{-k_{\Sigma} t} d t \\
{[D(t)] } & =\frac{k_{C F}}{k_{\Sigma}}\left[A_{0}\right]\left(1-e^{-k_{\Sigma} t}\right) \tag{16}
\end{align*}
$$

$\underline{\text { CID-Product Behavior }\left(V_{4} O_{10}^{-}\right) \text {: }}$

$$
\begin{align*}
\frac{d[E]}{d t} & =+k_{C I D}[A][F] \\
\text { with }(11) \rightarrow \frac{d[E]}{d t} & =+k_{C I D}^{\prime}[A] \\
\text { with }(14) \rightarrow \frac{d[E]}{d t} & =+k_{C I D}^{\prime}\left(\left[A_{0}\right] e^{-k_{\Sigma} t}\right) \\
\int_{\left[E_{0}\right]=0}^{[E(t)]} d[E] & =k_{C I D}^{\prime}\left[A_{0}\right] \int_{0}^{t} e^{-k_{\Sigma} t} d t \\
{[E(t)] } & =\frac{k_{C I D}^{\prime}}{k_{\Sigma}}\left[A_{0}\right]\left(1-e^{-k_{\Sigma} t}\right) \tag{17}
\end{align*}
$$

Fit Procedure:

The experimental data for the educt $\left(V_{4} O_{11}^{-}\right)$, the final complex product $\left(\left[V_{4} O_{10}(O H) C_{3} H_{5}\right]^{-}\right)$and CIDproduct $\left(V_{4} O_{10}^{-}\right)$is normalized to the sum of all ion signals to account for the $5-7 \%$ losses due to leakage from the ion trap over the substantial storage time of up to 12 s (as shown in Fig. 1). After normalization to the sum signal, the experimental data of the educt signal is fit with equation (14) for 200,250 and 300 K . The values for k_{Σ} that are obtained form the fit give the behavior of $\frac{1}{k_{\Sigma}}\left(1-e^{-k_{\Sigma} t}\right)$ for the respective temperature. The values of this expression are used to extract $k_{C F}$ and $k_{C I D}$ from the experimental data in the formation of the complex and CID-product over the full storage time with equations (16) and (17), respectively. The pressure normalized rate constants are given in Tables 1-3 below.

Rate Constants from the Model:

Tabelle 1: Rate Constants for the Educt Depletion: $k_{\Sigma}=k_{a d}^{\prime}-k_{d e} k_{E q}+k_{C I D}^{\prime}$

Temperature $/ \mathrm{K}$	$k_{\Sigma}{ }^{*} / \mathrm{s}^{-1}$
200	$2.38 \times 10^{-1} \pm 0.35 \times 10^{-1}$
250	$6.63 \times 10^{-1} \pm 0.22 \times 10^{-1}$
300	$8.40 \times 10^{-1} \pm 0.17 \times 10^{-1}$

Tabelle 2: Rate Constants for the Complex Formation: $k_{C F}=k_{E q} k_{H}$

Temperature / K	$k_{C F^{*} / \mathrm{s}^{-1}}$
200	$1.98 \times 10^{-1} \pm 0.17 \times 10^{-1}$
250	$5.82 \times 10^{-1} \pm 0.26 \times 10^{-1}$
300	$7.39 \times 10^{-1} \pm 0.27 \times 10^{-1}$

Tabelle 3: Rate Constants for the CID-Product Formation: $k_{C I D}^{\prime}$

Temperature $/ \mathrm{K}$	$k_{C I D}^{\prime}{ }^{*} / \mathrm{s}^{-1}$
200	$4.01 \times 10^{-2} \pm 1.32 \times 10^{-2}$
250	$8.01 \times 10^{-2} \pm 1.53 \times 10^{-2}$
300	$10.1 \times 10^{-2} \pm 2.12 \times 10^{-2}$

[^0]
[^0]: *Precision of the rate constants is given by the standard deviation of the experimental data form the kinetic model

