Supplementary Information

Theoretical Investigation on Electronic Structure and Second-Order Nonlinear Optical Properties of Novel Hexamolybdate-Organoimido-(Car)borane Hybrid

Nana Ma, Likai Yan, Wei Guan, Yongqing Qiu^{*} and Zhongmin Su^{*}

General Comments

- **§ Table S1** Transition energy (λ , nm; *E*, eV), oscillator strength (*f*), and the corresponding dominant MO transition for system **III** containing *B*-carboranyl by SAOP potential
- § Table S2 Calculated energies of HOMO and LUMO for all systems at BP86/TZP level
- **§ Table S3** Calculated frequency-dependent first hyperpolarizabilities β_{vec} (×10⁻³⁰ esu) for all systems
- § Fig. S1 Molecular orbitals of systems III-2p, 4m, 9o and 9m involved in the dominant electron transitions. The black arrow represents the maximum absorption peak, red arrow for the absorption about 360 nm, and blue arrow for the absorption about 350 nm (the short line across the black arrow means the repetitive transition).
- § Fig. S2 Molecular orbitals of systems III-2m, 3o and 4o involved in the dominant electron transitions. The black arrow represents the maximum absorption peak, red arrow for the absorption about 360 nm, and blue arrow for the absorption about 350 nm (the short line across the black arrow means the repetitive transition).
- § Fig. S3 Total and partial density of states (TDOS and PDOS) around the HOMO-LUMO gap for all systems

E-mail: qiuyq466@nenu.edu.cn, zmsu@nenu.edu.cn Fax: (+86) 431 85098768;

Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China

	λ/nm	E/eV	f	MO transition				
III-9m	419.9	2.95	0.2024	$170a' \rightarrow 177a' (46.24\%) 170a' \rightarrow 176a' (37.18\%)$				
				96a"→100a" (10.47%)				
	369.5	3.36	0.2084	170a'→177a' (24.20%) 170a'→176a' (20.43%)				
				168a'→171a' (11.87%) 94a"→98a" (11.21%)				
	355.8	3.48	0.1961	96a"→103a"(73.93%)				
III-9 <i>0</i>	418.9	2.96	0.2154	90a"→100a"(50.08%) 90a"→98a" (40.12%)				
	369.1	3.36	0.2226	90a"→100a"(26.63%) 90a"→98a" (22.45%)				
				86a″→91a″(11.54%)				
	356.3	3.48	0.2137	177a'→179a' (74.31%)				
III-4 <i>0</i>	409.1	3.03	0.2293	267a→283a (48.49%) 267a→279a (40.31%)				
	364.8	3.40	0.1622	267a→283a (25.64%) 267a→279a (17.46%)				
				$258a \rightarrow 279a (16.04\%) 265a \rightarrow 275a (11.64\%)$				
	354.4	3.50	0.2666	265a→275a (59.44%)				
III-4m	414.0	3.00	0.2384	267a→283a (49.46%) 267a→280a (41.20%)				
	367.5	3.37	0.2182	267a→283a (27.09%) 267a→280a (20.68%)				
	354.7	3.50	0.2036	265a→275a (65.58%)				
III-2 <i>p</i>	416.3	2.98	0.2424	$90a'' \rightarrow 100a'' (47.77\%) 90a'' \rightarrow 98a'' (41.03\%)$				
	368.4	3.37	0.1979	$90a'' \rightarrow 100a'' (23.69\%) 90a'' \rightarrow 98a'' (18.15\%)$				
				84a″→92a″(12.12%)				
	354.8	3.49	0.1804	177a'→179a' (69.15%)				
III-2m	403.1	3.08	0.1396	89a"→98a" (35.87%) 90a"→100a"(22.98%)				
	402.0	3.08	0.1231	90a″→98a″(18.90%)				
	362.3	3.42	0.1562	90a"→100a"(33.47%) 177a'→179a' (22.32%)				
				90a"→98a" (15.21%)				
	352.9	3.51	0.1802	177a'→179a' (25.52%) 88a"→94a" (18.36%)				
III-30	406.1	3.05	0.2526	$90a'' \rightarrow 100a'' (43.68\%) 90a'' \rightarrow 98a'' (35.47\%)$				
	364.8	3.40	0.2090	$90a'' \rightarrow 100a'' (32.16\%) 90a'' \rightarrow 98a'' (18.12\%)$				
				177a'→179a' (10.12%)				
	354.0	3.50	0.2244	177a'→179a' (56.82%)				

Table S1 Transition energy $(\lambda, \text{ nm}; E, \text{ eV})$, oscillator strength (f), and the corresponding dominant MO transition for systems III containing B-carboranyl by SAOP potential

system	ns HOMO (eV)	LUMO (eV)			
Ι	-5.582	-4.125			
П	-5.179	-4.032			
III-1a	-5.699	-4.147			
III-1 <i>n</i>	<i>i</i> -5.662	-4.138			
III-1p	-5.652	-4.138			
III-9 <i>n</i>	<i>i</i> -5.507	-4.121 -4.119			
III-9a	-5.503				
III-4a	-5.590	-4.128			
III-4 <i>n</i>	<i>i</i> -5.558	-4.126			
III-3a	-5.626	-4.137			
III-2 <i>n</i>	<i>i</i> -5.648	-4.135			
III-2p	-5.547	-4.123			

Table S2 Calculated energies of HOMO and LUMO for all systems at BP86/TZP level

Table S3 Calculated frequency-dependent first hyperpolarizabilities β_{vec} (×10⁻³⁰ esu) for all systems

systems	1064 nm			1340 nm			1910 nm		
	$\beta_{ m SHG}$	$\beta_{\rm EOPE}$	$\beta_{ m OR}$	$\beta_{ m SHG}$	$\beta_{\rm EOPE}$	$\beta_{\rm OR}$	$\beta_{ m SHG}$	$\beta_{\rm EOPE}$	$\beta_{ m OR}$
Ι	-369.5	35.2	35.2	62.6	28.5	28.5	34.1	24.5	24.5
II	-215.5	-368.2	-368.2	4270.6	-335.3	-335.3	-301.3	-201.7	-201.7
III-10	-953.8	55.6	55.6	96.8	45.5	45.5	53.8	39.2	39.2
III-1m	-713.2	63.1	63.1	113.2	51.5	51.5	61.1	44.3	44.3
III-1 <i>p</i>	-671.5	66.5	66.5	121.1	54.1	54.1	64.5	46.5	46.5
III-9m	-221.0	101.7	101.7	222.9	79.6	79.6	74.8	72.9	72.9
III-9 <i>0</i>	-227.7	93.4	93.4	204.0	73.0	73.0	86.6	61.7	61.7
III-4o	-328.3	62.8	62.8	124.9	50.3	50.3	61.1	42.8	42.8
III-4m	-282.0	85.7	85.7	171.9	68.4	68.4	126.0	58.3	58.3
III-30	-469.1	65.0	65.0	63.0	44.8	44.8	63.0	44.8	44.8
III-2m	-755.9	59.3	59.3	108.8	47.8	47.8	57.4	40.7	40.7
III-2 <i>p</i>	-275.2	100.1	100.1	203.1	79.3	79.3	92.5	67.4	67.4

Fig. S1 Molecular orbitals of systems III-2*p*, 4*m*, 9*o* and 9*m* involved in the dominant electron transitions. The black arrow represents the maximum absorption peak, red arrow for the absorption about 360 nm, and blue arrow for the absorption about 350 nm (the short line across the black arrow means the repetitive transition).

Fig. S2 Molecular orbitals of systems **III-2***m*, **30** and **40** involved in the dominant electron transitions. The black arrow represents the maximum absorption peak, red arrow for the absorption about 360 nm, and blue arrow for the absorption about 350 nm (the short line across the black arrow means the repetitive transition).

Fig. S3 Total and partial density of states (TDOS and PDOS) around the HOMO-LUMO gap for all systems