# Method/basis set dependence of NICS values among metallic nano-clusters and hydrocarbons

Zahra Badri, Cina Foroutan-Nejad, Parviz Rashidi-Ranjbar\*

School of Chemistry, College of Science, University of Tehran, Tehran, Iran.

Fax: +98 21 6649 5291 Tel: +98 21 6111 3301

ranjbar@khayam.ut.ac.ir

\* To whom correspondence should be addressed

**Table S-1.** NICS values at center, 1Å and 2Å above the ring plane of  $Li_3^+$  at different levels of theory; out-of-plane values are denoted by italic font, page S-18.

**Table S-2.** NICS values at center, 1Å and 2Å above the ring plane of  $Cu_3^+$  at different levels of theory; out-of-plane values are denoted by italic font, page S-18.

**Table S-3.** NICS values at center, 1 Å and 2 Å above the ring plane of  $Ag_3^+$  at different levels of theory; out-of-plane values are denoted by italic font, page S-19.

**Table S-4.** NICS values at center, 1Å and 2Å above the ring plane of  $Au_3^+$  at different levels of theory; out-of-plane values are denoted by italic font, page S-19.

**Table S-5.** NICS values at center, 1Å and 2Å above the ring plane of  $Sc_3^-$  at different levels of theory; out-of-plane values are denoted by italic font, page S-20.

**Table S-6.** NICS values at center, 1Å and 2Å above the ring plane of  $Y_3^-$  at different levels of theory; out-of-plane values are denoted by italic font, page S-20.

**Table S-7.** NICS values at center, 1 Å and 2 Å above the ring plane of  $\text{La}_3^-$  at different levels of theory; out-of-plane values are denoted by italic font, page S-21.

**Table S-8.** NICS values at center,  $1\text{\AA}$  and  $2\text{\AA}$  above the ring plane of  $Al_4^{2-}$  at different levels of theory; out-of-plane values are denoted by italic font, page S-21.

**Table S-9.** NICS values at center, 1 Å and 2 Å above the ring plane of  $\text{Ga}_4^{2-}$  at different levels of theory; out-of-plane values are denoted by italic font, page S-22.

**Table S-10.** NICS values at center, 1Å and 2Å above the ring plane of  $Cu_4^{2-}$  at different levels of theory; out-of-plane values are denoted by italic font, page S-23.

**Table S-11.** NICS values at center, 1Å and 2Å above the ring plane of  $Ag_4^{2-}$  at different levels of theory; out-of-plane values are denoted by italic font, page S-24.

**Table S-12.** NICS values at center,  $1\text{\AA}$  and  $2\text{\AA}$  above the ring plane of  $Au_4^{2-}$  at different levels of theory; out-of-plane values are denoted by italic font, page S-24.

**Table S-13.**  $\Delta$ NICS values (The differences between NICS values at the optimized geometries and those computed at the fixed geometries of Def2-QZVPP) at center and 1Å above the ring plane of Li<sub>3</sub><sup>+</sup> at different levels of theory, page 25.

**Table S-14.**  $\Delta$ NICS values (The differences between NICS values at the optimized geometries and those computed at the fixed geometries of Aug-cc-pVQZ) at center and 1Å above the ring plane of Cu<sub>3</sub><sup>+</sup> at different levels of theory, page S-25.

**Table S-15.**  $\Delta$ NICS values (The differences between NICS values at the optimized geometries and those computed at the fixed geometries of Def2-QZVPP) at center and 1Å above the ring plane ofAg<sub>3</sub><sup>+</sup> at different levels of theory, page S-25.

**Table S-16.**  $\Delta$ NICS values (The differences between NICS values at the optimized geometries and those computed at the fixed geometries of Def2-QZVPP) at center and 1Å above the ring plane of Au<sub>3</sub><sup>+</sup> at different levels of theory, page S-26.

**Table S-17.**  $\Delta$ NICS values (The differences between NICS values at the optimized geometries and those computed at the fixed geometries of Aug-cc-pVQZ) at center and 1Å above the ring plane of Sc<sub>3</sub><sup>-</sup> at different levels of theory, page S-26.

**Table S-18.**  $\Delta$ NICS values (The differences between NICS values at the optimized geometries and those computed at the fixed geometries of Def2-QZVPP) at center and 1Å above the ring plane of Y<sub>3</sub><sup>-</sup> at different levels of theory, page S-26.

**Table S-19.**  $\Delta$ NICS values (The differences between NICS values at the optimized geometries and those computed at the fixed geometries of Def2-QZVPP) at center and 1Å above the ring plane of La<sub>3</sub><sup>-</sup> at different levels of theory, page S-26.

**Table S-20.**  $\Delta$ NICS values (The differences between NICS values at the optimized geometries and those computed at the fixed geometries of Def2-QZVPP) at center and 1Å above the ring plane of Al<sub>4</sub><sup>2-</sup> at different levels of theory, page S-27.

**Table S-21.**  $\Delta$ NICS values (The differences between NICS values at the optimized geometries and those computed at the fixed geometries of Def2-QZVPP) at center and 1Å above the ring plane of Ga<sub>4</sub><sup>2-</sup> at different levels of theory, page S-27.

**Table S-22.**  $\Delta$ NICS values (The differences between NICS values at the optimized geometries and those computed at the fixed geometries of Def2-QZVPP) at center and 1Å above the ring plane of Cu<sub>4</sub><sup>2-</sup> at different levels of theory, page S-27.

**Table S-23.**  $\Delta$ NICS values (The differences between NICS values at the optimized geometries and those computed at the fixed geometries of Def2-QZVPP) at center and 1Å above the ring plane of Ag<sub>4</sub><sup>2-</sup> at different levels of theory, page S-28.

**Table S-24.**  $\Delta$ NICS values (The differences between NICS values at the optimized geometries and those computed at the fixed geometries of Def2-QZVPP) at center and 1Å above the ring plane of Au<sub>4</sub><sup>2-</sup> at different levels of theory, page S-28.

**Table S-25.**  $\Delta BL$  values (The differences between bond lengths of the cluster at the optimized geometries and those computed at Def2-QZVPP) of Li<sub>3</sub><sup>+</sup> at different levels of theory, page S-29.

**Table S-26.**  $\Delta$ NICS values (The differences between bond lengths of the cluster at the optimized geometries and those computed at Aug-cc-pVQZ) of Cu<sub>3</sub><sup>+</sup> at different levels of theory, page S-29.

**Table S-27.**  $\Delta$ NICS values (The differences between bond lengths of the cluster at the optimized geometries and those computed at Def2-QZVPP) ofAg<sub>3</sub><sup>+</sup> at different levels of theory, page S-29.

**Table S-28.**  $\Delta$ NICS values (The differences between bond lengths of the cluster at the optimized geometries and those computed at Def2-QZVPP) of Au<sub>3</sub><sup>+</sup> at different levels of theory, page S-29.

**Table S-29.**  $\Delta$ NICS values (The differences between bond lengths of the cluster at the optimized geometries and those computed at Aug-cc-pVQZ) of Sc<sub>3</sub><sup>-</sup> at different levels of theory, page S-30.

**Table S-30.**  $\triangle$ NICS values (The differences between bond lengths of the cluster at the optimized geometries and those computed at Def2-QZVPP) of  $Y_3^-$  at different levels of theory, page S-30.

**Table S-31.**  $\Delta$ NICS values (The differences between bond lengths of the cluster at the optimized geometries and those computed at Def2-QZVPP) of La<sub>3</sub><sup>-</sup> at different levels of theory, page S-30.

**Table S-32.**  $\Delta$ NICS values (The differences between bond lengths of the cluster at the optimized geometries and those computed at Def2-QZVPP) of Al<sub>4</sub><sup>2-</sup> at different levels of theory, page S-30.

**Table S-33.**  $\Delta$ NICS values (The differences between bond lengths of the cluster at the optimized geometries and those computed at Def2-QZVPP) of Ga<sub>4</sub><sup>2-</sup> at different levels of theory, page S-31.

**Table S-34.**  $\Delta$ NICS values (The differences between bond lengths of the cluster at the optimized geometries and those computed at Def2-QZVPP) of Cu<sub>4</sub><sup>2-</sup> at different levels of theory, page S-31.

**Table S-35.**  $\Delta$ NICS values (The differences between bond lengths of the cluster at the optimized geometries and those computed at Def2-QZVPP) of Ag<sub>4</sub><sup>2-</sup> at different levels of theory, page S-31.

**Table 36.**  $\Delta$ NICS values (The differences between bond lengths of the cluster at the optimized geometries and those computed at Def2-QZVPP) of Au<sub>4</sub><sup>2-</sup> at different levels of theory, page S-32.

**Figure S-1A.** NICS (0) values of  $C_3H_3^+$  at different levels of theory. Numbers 1 to 13 on the horizontal axis denote different basis sets which are employed for optimization and computation of NICS values, (1) 6-31G, (2) 6-31G(d), (3) 6-31G(d,p), (4) 6-31+G(d), (5) 6-31+G(d,p), (6) 6-31++G(d,p), (7) 6-311++G(d,p), (8) 6-311++G(2df,2pd), (9) 6-311++G(3df,3pd), (10) cc-pVDZ, (11) cc-pVTZ, (12) aug-cc-pVDZ, (13) aug-cc-pVTZ, page S-33.

**Figure S-1B.** NICS (1) values of  $C_3H_3^+$  at different levels of theory. Numbers 1 to 13 on the horizontal axis denote different basis sets which are employed for optimization and computation of NICS values, (1) 6-31G, (2) 6-31G(d), (3) 6-31G(d,p), (4) 6-31+G(d), (5) 6-31+G(d,p), (6) 6-31++G(d,p), (7) 6-311++G(d,p), (8) 6-311++G(2df,2pd), (9) 6-311++G(3df,3pd), (10) cc-pVDZ, (11) cc-pVTZ, (12) aug-cc-pVDZ, (13) aug-cc-pVTZ, page S-33.

**Figure S-2A.** NICS (0) values of  $C_3H_3^-$  at different levels of theory. Numbers 1 to 13 on the horizontal axis denote different basis sets which are employed for optimization and computation of NICS values, (1) 6-31G, (2) 6-31G(d), (3) 6-31G(d,p), (4) 6-31+G(d), (5) 6-31+G(d,p), (6) 6-31++G(d,p), (7) 6-311++G(d,p), (8) 6-311++G(2df,2pd), (9) 6-311++G(3df,3pd), (10) cc-pVDZ, (11) cc-pVTZ, (12) aug-cc-pVDZ, (13) aug-cc-pVTZ, page S-34.

**Figure S-2B.** NICS (1) values of  $C_3H_3^-$  at different levels of theory. Numbers 1 to 13 on the horizontal axis denote different basis sets which are employed for optimization and computation of NICS values, (1) 6-31G, (2) 6-31G(d), (3) 6-31G(d,p), (4) 6-31+G(d), (5) 6-31+G(d,p), (6) 6-31++G(d,p), (7) 6-311++G(d,p), (8) 6-311++G(2df,2pd), (9) 6-311++G(3df,3pd), (10) cc-pVDZ, (11) cc-pVTZ, (12) aug-cc-pVDZ, (13) aug-cc-pVTZ, page S-34.

**Figure S-3A.** NICS (0) values of  $C_4H_4^{2+}$  at different levels of theory. Numbers 1 to 13 on the horizontal axis denote different basis sets which are employed for optimization and computation of NICS values, (1) 6-31G, (2) 6-31G(d), (3) 6-31G(d,p), (4) 6-31+G(d), (5) 6-31+G(d,p), (6) 6-31++G(d,p), (7) 6-311++G(d,p), (8) 6-311++G(2df,2pd), (9) 6-311++G(3df,3pd), (10) cc-pVDZ, (11) cc-pVTZ, (12) aug-cc-pVDZ, (13) aug-cc-pVTZ, page S-35.

**Figure S-3B.** NICS (1) values of  $C_4H_4^{2+}$  at different levels of theory. Numbers 1 to 13 on the horizontal axis denote different basis sets which are employed for optimization and computation of NICS values, (1) 6-31G, (2) 6-31G(d), (3) 6-31G(d,p), (4) 6-31+G(d), (5) 6-31+G(d,p), (6) 6-31++G(d,p), (7) 6-311++G(d,p), (8) 6-311++G(2df,2pd), (9) 6-311++G(3df,3pd), (10) cc-pVDZ, (11) cc-pVTZ, (12) aug-cc-pVDZ, (13) aug-cc-pVTZ, page S-35.

**Figure S-4A.** NICS (0) values of  $C_4H_4$  at different levels of theory. Numbers 1 to 13 on the horizontal axis denote different basis sets which are employed for optimization and

computation of NICS values, (1) 6-31G, (2) 6-31G(d), (3) 6-31G(d,p), (4) 6-31+G(d), (5) 6-31+G(d,p), (6) 6-31++G(d,p), (7) 6-311++G(d,p), (8) 6-311++G(2df,2pd), (9) 6-311++G(3df,3pd), (10) cc-pVDZ, (11) cc-pVTZ, (12) aug-cc-pVDZ, (13) aug-cc-pVTZ, page S-36.

**Figure S-4B.** NICS (1) values of  $C_4H_4$  at different levels of theory. Numbers 1 to 13 on the horizontal axis denote different basis sets which are employed for optimization and computation of NICS values, (1) 6-31G, (2) 6-31G(d), (3) 6-31G(d,p), (4) 6-31+G(d), (5) 6-31+G(d,p), (6) 6-31++G(d,p), (7) 6-311++G(d,p), (8) 6-311++G(2df,2pd), (9) 6-311++G(3df,3pd), (10) cc-pVDZ, (11) cc-pVTZ, (12) aug-cc-pVDZ, (13) aug-cc-pVTZ, page S-36.

**Figure S-5A.** NICS (0) values of  $C_5H_5^+$  at different levels of theory. Numbers 1 to 13 on the horizontal axis denote different basis sets which are employed for optimization and computation of NICS values, (1) 6-31G, (2) 6-31G(d), (3) 6-31G(d,p), (4) 6-31+G(d), (5) 6-31+G(d,p), (6) 6-31++G(d,p), (7) 6-311++G(d,p), (8) 6-311++G(2df,2pd), (9) 6-311++G(3df,3pd), (10) cc-pVDZ, (11) cc-pVTZ, (12) aug-cc-pVDZ, (13) aug-cc-pVTZ, page S-37.

**Figure S-5B.** NICS (1) values of  $C_5H_5^+$  at different levels of theory. Numbers 1 to 13 on the horizontal axis denote different basis sets which are employed for optimization and computation of NICS values, (1) 6-31G, (2) 6-31G(d), (3) 6-31G(d,p), (4) 6-31+G(d), (5) 6-31+G(d,p), (6) 6-31++G(d,p), (7) 6-311++G(d,p), (8) 6-311++G(2df,2pd), (9) 6-311++G(3df,3pd), (10) cc-pVDZ, (11) cc-pVTZ, (12) aug-cc-pVDZ, (13) aug-cc-pVTZ, page S-37.

**Figure S-6A.** NICS (0) values of  $C_5H_5^-$  at different levels of theory. Numbers 1 to 13 on the horizontal axis denote different basis sets which are employed for optimization and computation of NICS values, (1) 6-31G, (2) 6-31G(d), (3) 6-31G(d,p), (4) 6-31+G(d), (5) 6-31+G(d,p), (6) 6-31++G(d,p), (7) 6-311++G(d,p), (8) 6-311++G(2df,2pd), (9) 6-311++G(3df,3pd), (10) cc-pVDZ, (11) cc-pVTZ, (12) aug-cc-pVDZ, (13) aug-cc-pVTZ, page S-38.

**Figure S-6B.** NICS (1) values of  $C_5H_5^-$  at different levels of theory. Numbers 1 to 13 on the horizontal axis denote different basis sets which are employed for optimization and computation of NICS values, (1) 6-31G, (2) 6-31G(d), (3) 6-31G(d,p), (4) 6-31+G(d), (5) 6-31+G(d,p), (6) 6-31++G(d,p), (7) 6-311++G(d,p), (8) 6-311++G(2df,2pd), (9) 6-311++G(3df,3pd), (10) cc-pVDZ, (11) cc-pVTZ, (12) aug-cc-pVDZ, (13) aug-cc-pVTZ, page S-38.

**Figure S-7A.** NICS (0) values of  $C_6H_6$  at different levels of theory. Numbers 1 to 13 on the horizontal axis denote different basis sets which are employed for optimization and computation of NICS values, (1) 6-31G, (2) 6-31G(d), (3) 6-31G(d,p), (4) 6-31+G(d), (5) 6-31+G(d,p), (6) 6-31++G(d,p), (7) 6-311++G(d,p), (8) 6-311++G(2df,2pd), (9) 6-

311++G(3df,3pd), (10) cc-pVDZ, (11) cc-pVTZ, (12) aug-cc-pVDZ, (13) aug-cc-pVTZ, page S-39.

**Figure S-7B.** NICS (1) values of  $C_6H_6$  at different levels of theory. Numbers 1 to 13 on the horizontal axis denote different basis sets which are employed for optimization and computation of NICS values, (1) 6-31G, (2) 6-31G(d), (3) 6-31G(d,p), (4) 6-31+G(d), (5) 6-31+G(d,p), (6) 6-31++G(d,p), (7) 6-311++G(d,p), (8) 6-311++G(2df,2pd), (9) 6-311++G(3df,3pd), (10) cc-pVDZ, (11) cc-pVTZ, (12) aug-cc-pVDZ, (13) aug-cc-pVTZ, page S-39.

**Figure S-8A.** NICS (0) values of  $C_7H_7^+$  at different levels of theory. Numbers 1 to 13 on the horizontal axis denote different basis sets which are employed for optimization and computation of NICS values, (1) 6-31G, (2) 6-31G(d), (3) 6-31G(d,p), (4) 6-31+G(d), (5) 6-31+G(d,p), (6) 6-31++G(d,p), (7) 6-311++G(d,p), (8) 6-311++G(2df,2pd), (9) 6-311++G(3df,3pd), (10) cc-pVDZ, (11) cc-pVTZ, (12) aug-cc-pVDZ, (13) aug-cc-pVTZ, page S-40.

**Figure S-8B.** NICS (1) values of  $C_7H_7^+$  at different levels of theory. Numbers 1 to 13 on the horizontal axis denote different basis sets which are employed for optimization and computation of NICS values, (1) 6-31G, (2) 6-31G(d), (3) 6-31G(d,p), (4) 6-31+G(d), (5) 6-31+G(d,p), (6) 6-31++G(d,p), (7) 6-311++G(d,p), (8) 6-311++G(2df,2pd), (9) 6-311++G(3df,3pd), (10) cc-pVDZ, (11) cc-pVTZ, (12) aug-cc-pVDZ, (13) aug-cc-pVTZ, page S-40.

**Figure S-9A.** NICS (0) values of  $C_8H_8^{2+}$  at different levels of theory. Numbers 1 to 13 on the horizontal axis denote different basis sets which are employed for optimization and computation of NICS values, (1) 6-31G, (2) 6-31G(d), (3) 6-31G(d,p), (4) 6-31+G(d), (5) 6-31+G(d,p), (6) 6-31++G(d,p), (7) 6-311++G(d,p), (8) 6-311++G(2df,2pd), (9) 6-311++G(3df,3pd), (10) cc-pVDZ, (11) cc-pVTZ, (12) aug-cc-pVDZ, (13) aug-cc-pVTZ, page S-41.

**Figure S-9B.** NICS (1) values of  $C_8H_8^{2+}$  at different levels of theory. Numbers 1 to 13 on the horizontal axis denote different basis sets which are employed for optimization and computation of NICS values, (1) 6-31G, (2) 6-31G(d), (3) 6-31G(d,p), (4) 6-31+G(d), (5) 6-31+G(d,p), (6) 6-31++G(d,p), (7) 6-311++G(d,p), (8) 6-311++G(2df,2pd), (9) 6-311++G(3df,3pd), (10) cc-pVDZ, (11) cc-pVTZ, (12) aug-cc-pVDZ, (13) aug-cc-pVTZ, page S-41.

**Figure S-10A.** NICS (0) values of  $C_8H_8^{2-}$  at different levels of theory. Numbers 1 to 13 on the horizontal axis denote different basis sets which are employed for optimization and computation of NICS values, (1) 6-31G, (2) 6-31G(d), (3) 6-31G(d,p), (4) 6-31+G(d), (5) 6-31+G(d,p), (6) 6-31++G(d,p), (7) 6-311++G(d,p), (8) 6-311++G(2df,2pd), (9) 6-311++G(3df,3pd), (10) cc-pVDZ, (11) cc-pVTZ, (12) aug-cc-pVDZ, (13) aug-cc-pVTZ, page S-42.

**Figure S-10B.** NICS (1) values of  $C_8H_8^{2-}$  at different levels of theory. Numbers 1 to 13 on the horizontal axis denote different basis sets which are employed for optimization and computation of NICS values, (1) 6-31G, (2) 6-31G(d), (3) 6-31G(d,p), (4) 6-31+G(d), (5) 6-31+G(d,p), (6) 6-31++G(d,p), (7) 6-311++G(d,p), (8) 6-311++G(2df,2pd), (9) 6-311++G(3df,3pd), (10) cc-pVDZ, (11) cc-pVTZ, (12) aug-cc-pVDZ, (13) aug-cc-pVTZ, page S-42.

**Figure S-11A.** NICS (0) values of  $C_9H_9^-$  at different levels of theory. Numbers 1 to 13 on the horizontal axis denote different basis sets which are employed for optimization and computation of NICS values, (1) 6-31G, (2) 6-31G(d), (3) 6-31G(d,p), (4) 6-31+G(d), (5) 6-31+G(d,p), (6) 6-31++G(d,p), (7) 6-311++G(d,p), (8) 6-311++G(2df,2pd), (9) 6-311++G(3df,3pd), (10) cc-pVDZ, (11) cc-pVTZ, (12) aug-cc-pVDZ, (13) aug-cc-pVTZ, page S-43.

**Figure S-11B.** NICS (1) values of  $C_9H_9^-$  at different levels of theory. Numbers 1 to 13 on the horizontal axis denote different basis sets which are employed for optimization and computation of NICS values, (1) 6-31G, (2) 6-31G(d), (3) 6-31G(d,p), (4) 6-31+G(d), (5) 6-31+G(d,p), (6) 6-31++G(d,p), (7) 6-311++G(d,p), (8) 6-311++G(2df,2pd), (9) 6-311++G(3df,3pd), (10) cc-pVDZ, (11) cc-pVTZ, (12) aug-cc-pVDZ, (13) aug-cc-pVTZ, page S-43.

**Figure S-12A.** NICS (0) values of  $Li_3^+$  at different levels of theory. Numbers 1 to 8 on the horizontal axis denote different basis sets which are employed for optimization and computation of NICS values, (1) Lanl2DZ, (2) DZVP (DFT orbital), (3) Def2-TZVP, (4) Def2-TZVPP, (5) Def2-QZVP, (6) Def2-QZVPP, (7) 6-311G(d) and (8) 6-311+G(d), page S-44.

**Figure S-12B.** NICS (1) values of  $\text{Li}_3^+$  at different levels of theory. Numbers 1 to 8 on the horizontal axis denote different basis sets which are employed for optimization and computation of NICS values, (1) Lanl2DZ, (2) DZVP (DFT orbital), (3) Def2-TZVP, (4) Def2-TZVPP, (5) Def2-QZVP, (6) Def2-QZVPP, (7) 6-311G(d) and (8) 6-311+G(d), page S-44.

**Figure S-13.** NICS (1) values of  $Cu_3^+$  at different levels of theory. Numbers 1 to 17 on the horizontal axis denote different basis sets which are employed for optimization and computation of NICS values, (1) Aug-cc-pVDZ-PP, (2) Aug-cc-pVTZ-PP, (3) Lanl2DZ, (4) Lanl2TZ, (5) Lanl2TZ(f), (6) DZVP(DFT orbital), (7) cc-pVDZ-PP, (8) cc-pVTZ-PP, (9) Def2-TZVP, (10) Def2-TZVPP, (11) Def2-QZVP, (12) Def2-QZVPP, (13) 6-311G(d), (14) 6-311+G(d), (15) Aug-cc-pVDZ, (16) Aug-cc-pVTZ and (17) Aug-cc-pVQZ, page S-45.

**Figure S-14A.** NICS (0) values of  $Ag_3^+$  at different levels of theory. Numbers 1 to 14 on the horizontal axis denote different basis sets which are employed for optimization and computation of NICS values, (1) Aug-cc-pVDZ-PP, (2) Aug-cc-pVTZ-PP, (3) Lanl2DZ, (4)

Lanl2TZ, (5) Lanl2TZ(f), (6) DZVP(DFT orbital), (7) cc-pVDZ-PP, (8) cc-pVTZ-PP, (9) Def2-TZVP, (10) Def2-TZVPP, (11) Def2-QZVP and (12) Def2-QZVPP, page S-46.

**Figure S-14B.** NICS (1) values of  $Ag_3^+$  at different levels of theory. Numbers 1 to 12 on the horizontal axis denote different basis sets which are employed for optimization and computation of NICS values, (1) Aug-cc-pVDZ-PP, (2) Aug-cc-pVTZ-PP, (3) Lanl2DZ, (4) Lanl2TZ, (5) Lanl2TZ(f), (6) DZVP(DFT orbital), (7) cc-pVDZ-PP, (8) cc-pVTZ-PP, (9) Def2-TZVP, (10) Def2-TZVPP, (11) Def2-QZVP and (12) Def2-QZVPP, page S-46.

**Figure S-15A.** NICS (0) values of  $Au_3^+$  at different levels of theory. Numbers 1 to 14 on the horizontal axis denote different basis sets which are employed for optimization and computation of NICS values, (1) Aug-cc-pVDZ-PP, (2) Aug-cc-pVTZ-PP, (3) Lanl2DZ, (4) Lanl2TZ, (5) Lanl2TZ(f), (6) cc-pVDZ-PP, (7) cc-pVTZ-PP, (8) Def2-TZVPP, (10) Def2-QZVP and (11) Def2-QZVPP. At BP86/Aug-cc-pVTZ-PP levels of theory Self Consistent Field calculations did not converge, page S-47.

**Figure S-15B.** NICS (1) values of  $Au_3^+$  at different levels of theory. Numbers 1 to 14 on the horizontal axis denote different basis sets which are employed for optimization and computation of NICS values, (1) Aug-cc-pVDZ-PP, (2) Aug-cc-pVTZ-PP, (3) Lanl2DZ, (4) Lanl2TZ, (5) Lanl2TZ(f), (6) cc-pVDZ-PP, (7) cc-pVTZ-PP, (8) Def2-TZVP, (9) Def2-TZVPP, (10) Def2-QZVP and (11) Def2-QZVPP.

At BP86/Aug-cc-pVTZ-PP level of theory Self Consistent Field calculations did not converge, page S-47.

**Figure S-16.** NICS (1) values of  $Sc_3^-$  at different levels of theory. Numbers 1 to 12 on the horizontal axis denote different basis sets which are employed for optimization and computation of NICS values, (1) Lanl2DZ, (2) Lanl2TZ, (3) Lanl2TZ(f), (4) Def2-TZVP, (5) Def2-TZVPP, (6) Def2-QZVP, (7) Def2-QZVPP, (8) 6-311G(d), (9) 6-311+G(d), (10) Aug-cc-pVDZ, (11), Aug-cc-pVTZ and (12) Aug-cc-pVQZ, page S-48.

**Figure S-17.** NICS (1) values of  $Y_3^-$  at different levels of theory. Numbers 1 to 14 on the horizontal axis denote different basis sets which are employed for optimization and computation of NICS values, (1) Lanl2DZ, (2) Lanl2TZ, (3) Lanl2TZ(f), (4) DZVP(DFT orbital), (5) Def2-TZVP, (6) Def2-TZVPP, (7) Def2-QZVP and (8) Def2-QZVPP, page S-49.

**Figure S-18.** NICS (1) values of  $La_3^-$  at different levels of theory. Numbers 1 to 9 on the horizontal axis denote different basis sets which are employed for optimization and computation of NICS values, (1) Lanl2DZ, (2) Lanl2TZ, (3) Lanl2TZ(f), (4) Def2-TZVP, (5) Def2-TZVPP, (6) Def2-QZVP, (7) Def2-QZVPP, page S-50.

**Figure S-19A.** NICS (0) values of  $Al_4^{2-}$  at different levels of theory. Numbers 1 to 8 on the horizontal axis denote different basis sets which are employed for optimization and computation of NICS values, (1) Lanl2DZ, (2) DZVP(DFT orbital), (3) Def2-TZVP, (4)

Def2-TZVPP, (5) Def2-QZVP and (6) Def2-QZVPP, (7) 6-311G(d) and (8) 6-311+G(d) , page S-51.

**Figure S-19B.** NICS (1) values of  $Al_4^{2-}$  at different levels of theory. Numbers 1 to 8 on the horizontal axis denote different basis sets which are employed for optimization and computation of NICS values, (1) Lanl2DZ, (2) DZVP(DFT orbital), (3) Def2-TZVP, (4) Def2-TZVPP, (5) Def2-QZVP and (6) Def2-QZVPP, (7) 6-311G(d) and (8) 6-311+G(d), page S-51.

**Figure S-20A.** NICS (0) values of  $Ga_4^{2-}$  at different levels of theory. Numbers 1 to 12 on the horizontal axis denote different basis sets which are employed for optimization and computation of NICS values, (1) Aug-cc-pVDZ-PP, (2) Aug-cc-pVTZ-PP, (3) Lanl2DZ, (4) DZVP(DFT orbital), (5) cc-pVDZ-PP, (6) cc-pVTZ-PP, (7) Def2-TZVP, (8) Def2-TZVPP, (9) Def2-QZVP, (10) Def2-QZVPP, (11) 6-311G(d) and (12) 6-311+G(d), page S-52.

**Figure S-20B.** NICS (1) values of  $Ga_4^{2-}$  at different levels of theory. Numbers 1 to 12 on the horizontal axis denote different basis sets which are employed for optimization and computation of NICS values, (1) Aug-cc-pVDZ-PP, (2) Aug-cc-pVTZ-PP, (3) Lanl2DZ, (4) DZVP(DFT orbital), (5) cc-pVDZ-PP, (6) cc-pVTZ-PP, (7) Def2-TZVP, (8) Def2-TZVPP, (9) Def2-QZVP, (10) Def2-QZVPP, (11) 6-311G(d) and (12) 6-311+G(d), page S-52.

**Figure S-21.** NICS (1) values of  $Cu_4^{2-}$  at different levels of theory. Numbers 1 to 16 on the horizontal axis denote different basis sets which are employed for optimization and computation of NICS values, (1) Aug-cc-pVDZ-PP, (2) Aug-cc-pVTZ-PP, (3) Lanl2DZ, (4) Lanl2TZ, (5) Lanl2TZ(f), (6) DZVP(DFT orbital), (7) cc-pVDZ-PP, (8) cc-pVTZ-PP, (9) Def2-TZVP, (10) Def2-TZVPP, (11) Def2-QZVP, (12) Def2-QZVPP, (13) 6-311G(d), (14) 6-311+G(d), (15) Aug-cc-pVDZ and (16) Aug-cc-pVTZ.

At M06/Aug-cc-pVTZ-PP, BP86/ cc-pVDZ-PP and B3LYP/cc-pVDZ-PP levels of theory Self Consistent Field calculations did not converge, page S-53.

**Figure S-22A.** NICS (0) values of  $Ag_4^{2-}$  at different levels of theory. Numbers 1 to 12 on the horizontal axis denote different basis sets which are employed for optimization and computation of NICS values, (1) Aug-cc-pVDZ-PP, (2) Aug-cc-pVTZ-PP, (3) Lanl2DZ, (4) Lanl2TZ, (5) Lanl2TZ(f), (6) DZVP(DFT orbital), (7) cc-pVDZ-PP, (8) cc-pVTZ-PP, (9) Def2-TZVP, (10) Def2-TZVPP, (11) Def2-QZVP and (12) Def2-QZVPP, page S-54.

**Figure S-22B.** NICS (1) values of  $Ag_4^{2-}$  at different levels of theory. Numbers 1 to 12 on the horizontal axis denote different basis sets which are employed for optimization and computation of NICS values, (1) Aug-cc-pVDZ-PP, (2) Aug-cc-pVTZ-PP, (3) Lanl2DZ, (4) Lanl2TZ, (5) Lanl2TZ(f), (6) DZVP(DFT orbital), (7) cc-pVDZ-PP, (8) cc-pVTZ-PP, (9) Def2-TZVP, (10) Def2-TZVPP, (11) Def2-QZVP and (12) Def2-QZVPP, page S-54.

**Figure S-23A.** NICS (0) values of  $Au_4^{2-}$  at different levels of theory. Numbers 1 to 11 on the horizontal axis denote different basis sets which are employed for optimization and

computation of NICS values, (1) Aug-cc-pVDZ-PP, (2) Aug-cc-pVTZ-PP, (3) Lanl2DZ, (4) Lanl2TZ, (5) Lanl2TZ(f), (6) cc-pVDZ-PP, (7) cc-pVTZ-PP, (8) Def2-TZVP, (9) Def2-TZVPP, (10) Def2-QZVP and (11) Def2-QZVPP, page S-55.

**Figure S-23B.** NICS (1) values of  $Au_4^{2-}$  at different levels of theory. Numbers 1 to 11 on the horizontal axis denote different basis sets which are employed for optimization and computation of NICS values, (1) Aug-cc-pVDZ-PP, (2) Aug-cc-pVTZ-PP, (3) Lanl2DZ, (4) Lanl2TZ, (5) Lanl2TZ(f), (6) cc-pVDZ-PP, (7) cc-pVTZ-PP, (8) Def2-TZVP, (9) Def2-TZVPP, (10) Def2-QZVP and (11) Def2-QZVPP, page S-55.

**Figure S-24.**  $NICS(0)_{iso}$ , dark blue circles, and  $NICS(0)_{zz}$ , red circle, in ppm versus bond length in Å in  $CH_3^+$ . This plot includes all data, computed by HF, B3LYP, B3PW91 and BLYP methods and different basis sets. Sky blue circles and orange circles represent NICS values which are different from the other data, page S-56.

**Figure S-25.** NICS(0)<sub>iso</sub>, dark blue circles, and NICS(0)<sub>zz</sub>, red circle, in ppm versus bond length in Å in  $CH_3^-$ . This plot includes all data, computed by HF, B3LYP, B3PW91 and BLYP methods and different basis sets, page S-56.

**Figure S-26.** NICS(0)<sub>iso</sub>, dark blue circles, and NICS(0)<sub>zz</sub>, red circle, in ppm versus bond length in Å in  $C_4H_4^{2+}$ . This plot includes all data, computed by HF, B3LYP, B3PW91 and BLYP methods and different basis sets. Orange circles represent NICS values which are different from the other data, page S-57.

**Figure S-27.** NICS(0)<sub>iso</sub>, dark blue circles, and NICS(0)<sub>zz</sub>, red circle, in ppm versus bond length in Å in C<sub>4</sub>H<sub>4</sub>. This plot includes all data, computed by HF, B3LYP, B3PW91 and BLYP methods and different basis sets, page S-57.

**Figure S-28.** NICS(0)<sub>iso</sub>, dark blue circles, and NICS(0)<sub>zz</sub>, red circle, in ppm versus bond length in Å in  $C_5H_5^+$ . This plot includes all data, computed by HF, B3LYP, B3PW91 and BLYP methods and different basis sets, page S-58.

**Figure S-29.** NICS(0)<sub>iso</sub>, dark blue circles, and NICS(0)<sub>zz</sub>, red circle, in ppm versus bond length in Å in  $C_5H_5^-$ . This plot includes all data, computed by HF, B3LYP, B3PW91 and BLYP methods and different basis sets. Sky blue circles and orange circles represent NICS values which are different from the other data, page S-58.

**Figure S-30.** NICS(0)<sub>iso</sub>, dark blue circles, and NICS(0)<sub>zz</sub>, red circle, in ppm versus bond length in Å in  $C_6H_6$ . This plot includes all data, computed by HF, B3LYP, B3PW91 and BLYP methods and different basis sets. Orange circles represent NICS values which are different from the other data, page S-59.

**Figure S-31.** NICS(0)<sub>iso</sub>, dark blue circles, and NICS(0)<sub>zz</sub>, red circle, in ppm versus bond length in Å in  $C_7H_7^+$ . This plot includes all data, computed by HF, B3LYP, B3PW91 and

BLYP methods and different basis sets. Orange circles represent NICS values which are different from the other data, page S-59.

**Figure S-32.** NICS(0)<sub>iso</sub>, dark blue circles, and NICS(0)<sub>zz</sub>, red circle, in ppm versus bond length in Å in  $C_8H_8^{2+}$ . This plot includes all data, computed by HF, B3LYP, B3PW91 and BLYP methods and different basis sets. Orange circles represent NICS values which are different from the other data, page S-60.

**Figure S-33.** NICS(0)<sub>iso</sub>, dark blue circles, and NICS(0)<sub>zz</sub>, red circle, in ppm versus bond length in Å in  $C_8H_8^{2-}$ . This plot includes all data, computed by HF, B3LYP, B3PW91 and BLYP methods and different basis sets. Orange circles represent NICS values which are different from the other data, page S-60.

**Figure S-34.** NICS(0)<sub>iso</sub>, dark blue circles, and NICS(0)<sub>zz</sub>, red circle, in ppm versus bond length in Å in  $C_9H_9^-$ . This plot includes all data, computed by HF, B3LYP, B3PW91 and BLYP methods and different basis sets. Orange circles represent NICS values which are different from the other data, page S-61.

**Figure S-35.**  $NICS(0)_{iso}$ , dark blue circles, and  $NICS(0)_{zz}$ , red circle, in ppm versus bond length in Å in  $Li_3^+$ . This plot includes all data, computed by B3LYP and BP86 and M06 methods and different basis sets. Sky blue circles and orange circles represent NICS values which are different from the other data, page S-61.

**Figure S-36.** NICS(1)<sub>iso</sub>, dark blue circles, and NICS(0)<sub>zz</sub>, red circle, in ppm versus bond length in Å in  $Cu_3^+$ . This plot includes all data, computed by B3LYP and BP86 and M06 methods and different basis sets. Sky blue circles and orange circles represent NICS values which are different from the other data, page S-62.

**Figure S-37.**  $NICS(0)_{iso}$ , dark blue circles, and  $NICS(0)_{zz}$ , red circle, in ppm versus bond length in Å in Ag<sub>3</sub><sup>+</sup>. This plot includes all data, computed by B3LYP and BP86 and M06 methods and different basis sets. Sky blue circles and orange circles represent NICS values which are different from the other data, page S-62.

**Figure S-38.** NICS(0)<sub>iso</sub>, dark blue circles, and NICS(0)<sub>zz</sub>, red circle, in ppm versus bond length in Å in  $Au_3^+$ . This plot includes all data, computed by B3LYP and BP86 and M06 methods and different basis sets. Sky blue circles and orange circles represent NICS values which are different from the other data, page S-63.

**Figure S-39.**  $NICS(0)_{iso}$ , dark blue circles, and  $NICS(0)_{zz}$ , red circle, in ppm versus bond length in Å in Sc<sub>3</sub><sup>-</sup>. This plot includes all data, computed by B3LYP and BP86 and M06 methods and different basis sets. Sky blue circles and orange circles represent NICS values which are different from the other data, page S-63.

**Figure S-40.** NICS(0)<sub>iso</sub>, dark blue circles, and NICS(0)<sub>zz</sub>, red circle, in ppm versus bond length in Å in  $Y_3^-$ . This plot includes all data, computed by B3LYP and BP86 and M06 methods and different basis sets, page S-64.

**Figure S-41.** NICS(0)<sub>iso</sub>, dark blue circles, and NICS(0)<sub>zz</sub>, red circle, in ppm versus bond length in Å in La<sub>3</sub><sup>-</sup>. This plot includes all data, computed by B3LYP and BP86 and M06 methods and different basis sets, page S-64.

**Figure S-42.** NICS(0)<sub>iso</sub>, dark blue circles, and NICS(0)<sub>zz</sub>, red circle, in ppm versus bond length in Å in  $Al_4^{2-}$ . This plot includes all data, computed by B3LYP and BP86 and M06 methods and different basis sets, page S-65.

**Figure S-43.** NICS(0)<sub>iso</sub>, dark blue circles, and NICS(0)<sub>zz</sub>, red circle, in ppm versus bond length in Å in  $Ga_4^{2-}$ . This plot includes all data, computed by B3LYP and BP86 and M06 methods and different basis sets, page S-65.

**Figure S-44.** NICS(0)<sub>iso</sub>, dark blue circles, and NICS(0)<sub>zz</sub>, red circle, in ppm versus bond length in Å in  $Cu_4^{2^-}$ . This plot includes all data, computed by B3LYP and BP86 and M06 methods and different basis sets. Sky blue circles and orange circles represent NICS values which are different from the other data, page S-66.

**Figure S-45.** NICS(0)<sub>iso</sub>, dark blue circles, and NICS(0)<sub>zz</sub>, red circle, in ppm versus bond length in Å in  $Ag_4^{2^-}$ . This plot includes all data, computed by B3LYP and BP86 and M06 methods and different basis sets, page S-66.

**Figure S-46.** NICS(0)<sub>iso</sub>, dark blue circles, and NICS(0)<sub>zz</sub>, red circle, in ppm versus bond length in Å in  $Au_4^{2-}$ . This plot includes all data, computed by B3LYP and BP86 and M06 methods and different basis sets. Orange circles represent NICS values which are different from the other data, page S-67.

**Figure S-47A.** NICS (0) values of  $\text{Li}_3^+$  at different levels of theory. Numbers 1 to 8 on the horizontal axis denote different basis sets which are employed for computation of NICS values in geometry of molecule optimized by Def2-QZVPP basis set, (1) Lanl2DZ, (2) DZVP (DFT orbital), (3) Def2-TZVP, (4) Def2-TZVPP, (5) Def2-QZVP, (6) Def2-QZVPP, (7) 6-311G(d) and (8) 6-311+G(d), page S-68.

**Figure S-47B.** NICS (1) values of  $\text{Li}_3^+$  at different levels of theory. Numbers 1 to 8 on the horizontal axis denote different basis sets which are employed for computation of NICS values in geometry of molecule optimized by Def2-QZVPP basis set, (1) Lanl2DZ, (2) DZVP (DFT orbital), (3) Def2-TZVP, (4) Def2-TZVPP, (5) Def2-QZVP, (6) Def2-QZVPP, (7) 6-311G(d) and (8) 6-311+G(d), page S-68.

**Figure S-48A.** NICS (0) values of  $Cu_3^+$  at different levels of theory. Numbers 1 to 17 on the horizontal axis denote different basis sets which are employed for computation of NICS

values in geometry of molecule optimized by Aug-cc-pVQZ basis set, (1) Aug-cc-pVDZ-PP, (2) Aug-cc-pVTZ-PP, (3) Lanl2DZ, (4) Lanl2TZ, (5) Lanl2TZ(f), (6) DZVP(DFT orbital), (7) cc-pVDZ-PP, (8) cc-pVTZ-PP, (9) Def2-TZVP, (10) Def2-TZVPP, (11) Def2-QZVP, (12) Def2-QZVPP, (13) 6-311G(d), (14) 6-311+G(d), (15) Aug-cc-pVDZ, (16) Aug-cc-pVTZ and (17) Aug-cc-pVQZ, page S-69.

**Figure S-48B.** NICS (1) values of  $Cu_3^+$  at different levels of theory. Numbers 1 to 17 on the horizontal axis denote different basis sets which are employed for computation of NICS values in geometry of molecule optimized by Aug-cc-pVQZ basis set, (1) Aug-cc-pVDZ-PP, (2) Aug-cc-pVTZ-PP, (3) Lanl2DZ, (4) Lanl2TZ, (5) Lanl2TZ(f), (6) DZVP(DFT orbital), (7) cc-pVDZ-PP, (8) cc-pVTZ-PP, (9) Def2-TZVP, (10) Def2-TZVPP, (11) Def2-QZVP, (12) Def2-QZVPP, (13) 6-311G(d), (14) 6-311+G(d), (15) Aug-cc-pVDZ, (16) Aug-cc-pVTZ and (17) Aug-cc-pVQZ, page S-69.

**Figure S-49A.** NICS (0) values of  $Ag_3^+$  at different levels of theory. Numbers 1 to 14 on the horizontal axis denote different basis sets which are employed for computation of NICS values in geometry of molecule optimized by Def2-QZVPP basis set, (1) Aug-cc-pVDZ-PP, (2) Aug-cc-pVTZ-PP, (3) Lanl2DZ, (4) Lanl2TZ, (5) Lanl2TZ(f), (6) DZVP(DFT orbital), (7) cc-pVDZ-PP, (8) cc-pVTZ-PP, (9) Def2-TZVP, (10) Def2-TZVPP, (11) Def2-QZVP and (12) Def2-QZVPP, page S-70.

**Figure S-49B.** NICS (1) values of  $Ag_3^+$  at different levels of theory. Numbers 1 to 12 on the horizontal axis denote different basis sets which are employed for computation of NICS values in geometry of molecule optimized by Def2-QZVPP basis set, (1) Aug-cc-pVDZ-PP, (2) Aug-cc-pVTZ-PP, (3) Lanl2DZ, (4) Lanl2TZ, (5) Lanl2TZ(f), (6) DZVP(DFT orbital), (7) cc-pVDZ-PP, (8) cc-pVTZ-PP, (9) Def2-TZVP, (10) Def2-TZVPP, (11) Def2-QZVP and (12) Def2-QZVPP, page S-70.

**Figure S-50A.** NICS (0) values of  $Au_3^+$  at different levels of theory. Numbers 1 to 14 on the horizontal axis denote different basis sets which are employed for computation of NICS values in geometry of molecule optimized by Def2-QZVPP basis set, (1) Aug-cc-pVDZ-PP, (2) Aug-cc-pVTZ-PP, (3) Lanl2DZ, (4) Lanl2TZ, (5) Lanl2TZ(f), (6) cc-pVDZ-PP, (7) cc-pVTZ-PP, (8) Def2-TZVP, (9) Def2-TZVPP, (10) Def2-QZVP and (11) Def2-QZVPP. At BP86/Aug-cc-pVTZ-PP levels of theory Self Consistent Field calculations did not converge, page S-71.

**Figure S-50B.** NICS (1) values of  $Au_3^+$  at different levels of theory. Numbers 1 to 14 on the horizontal axis denote different basis sets which are employed for computation of NICS values in geometry of molecule optimized by Def2-QZVPP basis set, (1) Aug-cc-pVDZ-PP, (2) Aug-cc-pVTZ-PP, (3) Lanl2DZ, (4) Lanl2TZ, (5) Lanl2TZ(f), (6) cc-pVDZ-PP, (7) cc-pVTZ-PP, (8) Def2-TZVP, (9) Def2-TZVPP, (10) Def2-QZVP and (11) Def2-QZVPP. At BP86/Aug-cc-pVTZ-PP level of theory Self Consistent Field calculations did not converge, page S-71.

**Figure S-51A.** NICS (0) values of  $Sc_3^-$  at different levels of theory. Numbers 1 to 12 on the horizontal axis denote different basis sets which are employed for computation of NICS values in geometry of molecule optimized by Aug-cc-pVQZ basis set, (1) Lanl2DZ, (2) Lanl2TZ, (3) Lanl2TZ(f), (4) Def2-TZVP, (5) Def2-TZVPP, (6) Def2-QZVP, (7) Def2-QZVPP, (8) 6-311G(d), (9) 6-311+G(d), (10) Aug-cc-pVDZ, (11), Aug-cc-pVTZ and (12) Aug-cc-pVQZ, page S-72.

**Figure S-51B.** NICS (1) values of  $Sc_3^-$  at different levels of theory. Numbers 1 to 12 on the horizontal axis denote different basis sets which are employed for computation of NICS values in geometry of molecule optimized by Aug-cc-pVQZ basis set, (1) Lanl2DZ, (2) Lanl2TZ, (3) Lanl2TZ(f), (4) Def2-TZVP, (5) Def2-TZVPP, (6) Def2-QZVP, (7) Def2-QZVPP, (8) 6-311G(d), (9) 6-311+G(d), (10) Aug-cc-pVDZ, (11), Aug-cc-pVTZ and (12) Aug-cc-pVQZ, page S-72.

**Figure S-52A.** NICS (0) values of  $Y_3^-$  at different levels of theory. Numbers 1 to 14 on the horizontal axis denote different basis sets which are employed for computation of NICS values in geometry of molecule optimized by Def2-QZVPP basis set, (1) Lanl2DZ, (2) Lanl2TZ, (3) Lanl2TZ(f), (4) DZVP(DFT orbital), (5) Def2-TZVP, (6) Def2-TZVPP, (7) Def2-QZVP and (8) Def2-QZVPP, page S-73.

**Figure S-52B.** NICS (1) values of  $Y_3^-$  at different levels of theory. Numbers 1 to 14 on the horizontal axis denote different basis sets which are employed for computation of NICS values in geometry of molecule optimized by Def2-QZVPP basis set, (1) Lanl2DZ, (2) Lanl2TZ, (3) Lanl2TZ(f), (4) DZVP(DFT orbital), (5) Def2-TZVP, (6) Def2-TZVPP, (7) Def2-QZVP and (8) Def2-QZVPP, page S-73.

**Figure S-53A.** NICS (0) values of  $La_3^-$  at different levels of theory. Numbers 1 to 9 on the horizontal axis denote different basis sets which are employed for computation of NICS values in geometry of molecule optimized by Def2-QZVPP basis set, (1) Lanl2DZ, (2) Lanl2TZ, (3) Lanl2TZ(f), (4) Def2-TZVP, (5) Def2-TZVPP, (6) Def2-QZVP, (7) Def2-QZVPP, page S-74.

**Figure S-53B.** NICS (1) values of  $La_3^-$  at different levels of theory. Numbers 1 to 9 on the horizontal axis denote different basis sets which are employed for computation of NICS values in geometry of molecule optimized by Def2-QZVPP basis set, (1) Lanl2DZ, (2) Lanl2TZ, (3) Lanl2TZ(f), (4) Def2-TZVP, (5) Def2-TZVPP, (6) Def2-QZVP, (7) Def2-QZVPP, page S-74.

**Figure S-54A.** NICS (0) values of  $Al_4^{2-}$  at different levels of theory. Numbers 1 to 8 on the horizontal axis denote different basis sets which are employed for computation of NICS values in geometry of molecule optimized by Def2-QZVPP basis set, (1) Lanl2DZ, (2) DZVP(DFT orbital), (3) Def2-TZVP, (4) Def2-TZVPP, (5) Def2-QZVP and (6) Def2-QZVPP, (7) 6-311G(d) and (8) 6-311+G(d), page S-75.

**Figure S-54B.** NICS (1) values of  $Al_4^{2-}$  at different levels of theory. Numbers 1 to 8 on the horizontal axis denote different basis sets which are employed for computation of NICS values in geometry of molecule optimized by Def2-QZVPP basis set, (1) Lanl2DZ, (2) DZVP(DFT orbital), (3) Def2-TZVP, (4) Def2-TZVPP, (5) Def2-QZVP and (6) Def2-QZVPP, (7) 6-311G(d) and (8) 6-311+G(d), page S-75.

**Figure S-55A.** NICS (0) values of  $Ga_4^{2-}$  at different levels of theory. Numbers 1 to 12 on the horizontal axis denote different basis sets which are employed for computation of NICS values in geometry of molecule optimized by Def2-QZVPP basis set, (1) Aug-cc-pVDZ-PP, (2) Aug-cc-pVTZ-PP, (3) Lanl2DZ, (4) DZVP(DFT orbital), (5) cc-pVDZ-PP, (6) cc-pVTZ-PP, (7) Def2-TZVP, (8) Def2-TZVPP, (9) Def2-QZVP, (10) Def2-QZVPP, (11) 6-311G(d) and (12) 6-311+G(d), page S-76.

**Figure S-55B.** NICS (1) values of  $Ga_4^{2-}$  at different levels of theory. Numbers 1 to 12 on the horizontal axis denote different basis sets which are employed for computation of NICS values in geometry of molecule optimized by Def2-QZVPP basis set, (1) Aug-cc-pVDZ-PP, (2) Aug-cc-pVTZ-PP, (3) Lanl2DZ, (4) DZVP(DFT orbital), (5) cc-pVDZ-PP, (6) cc-pVTZ-PP, (7) Def2-TZVP, (8) Def2-TZVPP, (9) Def2-QZVP, (10) Def2-QZVPP, (11) 6-311G(d) and (12) 6-311+G(d), page S-76.

**Figure S-56A.** NICS (0) values of  $Cu_4^{2-}$  at different levels of theory. Numbers 1 to 16 on the horizontal axis denote different basis sets which are employed for computation of NICS values in geometry of molecule optimized by Def2-QZVPP basis set, (1) Aug-cc-pVDZ-PP, (2) Aug-cc-pVTZ-PP, (3) Lanl2DZ, (4) Lanl2TZ, (5) Lanl2TZ(f), (6) DZVP(DFT orbital), (7) cc-pVDZ-PP, (8) cc-pVTZ-PP, (9) Def2-TZVP, (10) Def2-TZVPP, (11) Def2-QZVP, (12) Def2-QZVPP, (13) 6-311G(d), (14) 6-311+G(d), (15) Aug-cc-pVDZ and (16) Aug-cc-pVTZ.

At M06/Aug-cc-pVTZ-PP, BP86/ cc-pVDZ-PP and B3LYP/cc-pVDZ-PP levels of theory Self Consistent Field calculations did not converge, page S-77.

**Figure S-56B.** NICS (1) values of  $Cu_4^{2-}$  at different levels of theory. Numbers 1 to 16 on the horizontal axis denote different basis sets which are employed for computation of NICS values in geometry of molecule optimized by Def2-QZVPP basis set, (1) Aug-cc-pVDZ-PP, (2) Aug-cc-pVTZ-PP, (3) Lanl2DZ, (4) Lanl2TZ, (5) Lanl2TZ(f), (6) DZVP(DFT orbital), (7) cc-pVDZ-PP, (8) cc-pVTZ-PP, (9) Def2-TZVP, (10) Def2-TZVPP, (11) Def2-QZVP, (12) Def2-QZVPP, (13) 6-311G(d), (14) 6-311+G(d), (15) Aug-cc-pVDZ and (16) Aug-cc-pVTZ.

At M06/Aug-cc-pVTZ-PP, BP86/ cc-pVDZ-PP and B3LYP/cc-pVDZ-PP levels of theory Self Consistent Field calculations did not converge, page S-77.

**Figure S-57A.** NICS (0) values of  $Ag_4^{2-}$  at different levels of theory. Numbers 1 to 12 on the horizontal axis denote different basis sets which are employed for computation of NICS values in geometry of molecule optimized by Def2-QZVPP basis set, (1) Aug-cc-pVDZ-PP, (2) Aug-cc-pVTZ-PP, (3) Lanl2DZ, (4) Lanl2TZ, (5) Lanl2TZ(f), (6) DZVP(DFT orbital),

(7) cc-pVDZ-PP, (8) cc-pVTZ-PP, (9) Def2-TZVP, (10) Def2-TZVPP, (11) Def2-QZVP and (12) Def2-QZVPP, page S-78.

**Figure S-57B.** NICS (1) values of  $Ag_4^{2-}$  at different levels of theory. Numbers 1 to 12 on the horizontal axis denote different basis sets which are employed for computation of NICS values in geometry of molecule optimized by Def2-QZVPP basis set, (1) Aug-cc-pVDZ-PP, (2) Aug-cc-pVTZ-PP, (3) Lanl2DZ, (4) Lanl2TZ, (5) Lanl2TZ(f), (6) DZVP(DFT orbital), (7) cc-pVDZ-PP, (8) cc-pVTZ-PP, (9) Def2-TZVP, (10) Def2-TZVPP, (11) Def2-QZVP and (12) Def2-QZVPP, page S-78.

**Figure S-58A.** NICS (0) values of  $Au_4^{2-}$  at different levels of theory. Numbers 1 to 11 on the horizontal axis denote different basis sets which are employed for computation of NICS values in geometry of molecule optimized by Def2-QZVPP basis set, (1) Aug-cc-pVDZ-PP, (2) Aug-cc-pVTZ-PP, (3) Lanl2DZ, (4) Lanl2TZ, (5) Lanl2TZ(f), (6) cc-pVDZ-PP, (7) cc-pVTZ-PP, (8) Def2-TZVP, (9) Def2-TZVPP, (10) Def2-QZVP and (11) Def2-QZVPP, page S-79.

**Figure S-58B.** NICS (1) values of  $Au_4^{2-}$  at different levels of theory. Numbers 1 to 11 on the horizontal axis denote different basis sets which are employed for computation of NICS values in geometry of molecule optimized by Def2-QZVPP basis set, (1) Aug-cc-pVDZ-PP, (2) Aug-cc-pVTZ-PP, (3) Lanl2DZ, (4) Lanl2TZ, (5) Lanl2TZ(f), (6) cc-pVDZ-PP, (7) cc-pVTZ-PP, (8) Def2-TZVP, (9) Def2-TZVPP, (10) Def2-QZVP and (11) Def2-QZVPP, page S-79.

Reference for Basis sets. see page S-80.

| Li <sub>3</sub> <sup>+</sup> |                                 | BP86                     |                |                        | B3LYP            |                       |                         | M06                      |                |                       |
|------------------------------|---------------------------------|--------------------------|----------------|------------------------|------------------|-----------------------|-------------------------|--------------------------|----------------|-----------------------|
| Basis sets                   | Number<br>of basis<br>functions | NICS(0)                  | NICS(1)        | NICS(2)                | NICS(0)          | NICS(1)               | NICS(2)                 | NICS(0)                  | NICS(1)        | NICS(2)               |
| Lan <sup>12</sup> DZ         | 27                              | -11.30<br><i>-9.19</i>   | -7.05<br>-7.84 | -1.65<br>-4.28         | -11.26<br>-9.05  | -7.04<br>-7.80        | -1.63<br>-4.27          | -11.26<br>-9.70          | -7.01<br>-8.10 | -1.72<br>-4.42        |
| DZVP(DFT<br>orbit al)        | 33                              | -12.21<br>- <i>10.91</i> | -7.71<br>-9.07 | -2.03<br>-4.92         | -12.35<br>-11.05 | -7.69<br>-9.17        | -1.96<br>-4.93          | -11.85<br>- <i>10.52</i> | -7.69<br>-8.80 | -2.15<br>-4.86        |
| Def2-TZVP                    | 42                              | -10.82<br>-8.90          | -6.85<br>-7.69 | -1.68<br>-4.37         | -10.66<br>-8.63  | -6.73<br>-7.54        | -1.61<br>-4.30          | -10.94<br>-9.54          | -6.96<br>-8.12 | -1.78<br>-4.64        |
| Def2-TZVPP                   | 57                              | -11.14<br>-9.09          | -6.89<br>-7.62 | -1.77<br>-4.19         | -11.05<br>-8.86  | -6.76<br>-7.48        | -1.67<br>-4.10          | -11.38<br>-9.96          | -7.02<br>-8.22 | -1.82<br>-4.52        |
| Def2-QZVP                    | 105                             | -11.16<br>-8.95          | -6.84<br>-7.42 | -1.74<br>- <i>3.94</i> | -11.12<br>-8.81  | <b>-6.75</b><br>-7.32 | -1.69<br>-3.88          | -11.39<br>- <i>10.33</i> | -7.01<br>-8.37 | -1.89<br><i>-4.49</i> |
| Def2-QZVPP                   | 105                             | -11.16<br>-8.95          | -6.84<br>-7.42 | -1.74<br><i>-3.94</i>  | -11.12<br>-8.81  | -6.75<br>-7.32        | -1.69<br>- <i>3.</i> 88 | -11.39<br>- <i>10.33</i> | -7.01<br>-8.37 | -1.89<br>-4.49        |
| 6-311G(d)                    | 54                              | -11.21<br>-9.02          | -6.93<br>-7.49 | -1.72<br>-4.05         | -11.07<br>-8.74  | -6.79<br>-7.32        | -1.61<br>- <i>3.9</i> 6 | -11.41<br>-9.72          | -7.00<br>-7.97 | -1.70<br><i>-4.31</i> |
| 6-311+G(d)                   | 66                              | -11.21<br>-9.03          | -6.94<br>-7.49 | -1.72<br>-4.04         | -11.08<br>-8.75  | -6.79<br>-7.32        | -1.61<br>- <i>3.9</i> 6 | -11.44<br>-9.77          | -7.01<br>-6.59 | -1.71<br>-0.46        |

| Cu <sub>3</sub> <sup>+</sup> |                                 | BP86                      | BP86             |                         |                          |                           |                         | M06              |                           |                          |  |
|------------------------------|---------------------------------|---------------------------|------------------|-------------------------|--------------------------|---------------------------|-------------------------|------------------|---------------------------|--------------------------|--|
| Basis sets                   | Number<br>of basis<br>functions | NICS(0)                   | NICS(1)          | NICS(2)                 | NICS(0)                  | NICS(1)                   | NICS(2)                 | NICS(0)          | NICS(1)                   | NICS(2)                  |  |
| Aug-cc-pVDZ-PP               | 162                             | -42.60<br>-28.58          | -17.07<br>-28.16 | -2.67<br>-14.18         | -34.86<br>-16.26         | -14.47<br>-23.34          | -2.37<br>-13.24         | -34.55<br>-14.78 | -14.15<br>-22.94          | -2.09<br>-13.12          |  |
| Aug-cc-pVTZ-PP               | 264                             | -42.27                    | -16.93           | -2.65                   | -34.17                   | -14.14                    | -2.28                   | -34.55           | -14.22                    | 2.14                     |  |
| Lanl2DZ                      | 66                              | -32.507                   | -13.79           | -1.99                   | -28.27                   | -12.31                    | -1.83                   | -29.07           | -12.22                    | -1.57                    |  |
| Lanl2TZ                      | 105                             | -36.00                    | -14.76           | -2.15                   | -30.50                   | -12.98                    | -1.96                   | -30.91           | -12.70                    | -1.69                    |  |
| Lanl2TZ(f)                   | 126                             | -35.99                    | -14.75<br>-23.79 | -2.15                   | -30.51                   | -12.98                    | -1.96                   | -30.94           | -12.70<br>-20.44          | -1.68                    |  |
| DZVP(DFT orbital)            | 72                              | -33.07<br>-15.01          | -15.40<br>-24.10 | -2.72<br>-13.68         | -28.29<br>-8.25          | -13.56<br>-20.67          | -2.49<br>-12.88         | -29.75<br>-8.80  | -14.14<br>-21.43          | -2.47<br>-13.06          |  |
| cc-pVDZ-PP                   | 114                             | -43.52<br>- <i>3</i> 0.52 | -17.23<br>-29.29 | -2.91<br>- <i>14.62</i> | -34.91<br>- <i>16.72</i> | -14.36<br>-23.89          | -2.52<br>-13.52         | -34.60<br>-15.39 | -14.08<br>-23.49          | -2.29<br>-13.43          |  |
| cc-pVTZ-PP                   | 189                             | -41.66<br>-27.33          | -17.09<br>-28.03 | -2.68<br>-14.32         | -33.66<br>-14.80         | -14.27<br>-22.92          | -2.30<br>-13.23         | -33.96<br>-14.40 | -14.34<br>-22.94          | - 2.14<br>- <i>13.22</i> |  |
| Def2-TZVP                    | 135                             | -33.63<br>-14.53          | -13.94<br>-22.08 | -1.66<br>-12.77         | -28.13<br>-6.92          | -12.09<br>-18.67          | -1.52<br>-12.05         | -28.94<br>-7.06  | - 12.17<br>- <i>19.09</i> | -1.38<br>- <i>12.15</i>  |  |
| Def2-TZVPP                   | 192                             | -34.02<br>-15.13          | -14.17<br>-22.29 | -1.69<br>-12.84         | -28.36<br>-7.25          | -12.25<br>- <i>1</i> 8.79 | -1.59<br>-12.09         | -29.08<br>-7.25  | -12.34<br>-19.20          | -1.34<br>-12.20          |  |
| Def2-QZVP                    | 252                             | -34.19<br>-15.20          | -13.98<br>-22.42 | -2.09<br>-12.86         | -28.41<br>-7.17          | -12.09<br>- <i>1</i> 8.89 | -1.92<br>-12.11         | -29.11<br>-7.12  | -12.28<br>-19.26          | -1.80<br>- <i>12.21</i>  |  |
| Def2-QZVPP                   | 300                             | -34.02<br>-15.13          | -14.17<br>-22.29 | -1.69<br>-12.84         | -28.36<br>-7.25          | -12.25<br>-18.79          | -1.59<br>-12.09         | -29.06<br>-6.91  | -12.16<br><i>-19.16</i>   | -1.71<br><i>-12.18</i>   |  |
| 6-311G(d)                    | 138                             | -30.26<br>-9.80           | -8.59<br>-14.79  | -0.94<br>-8.47          | -23.98<br>-2.91          | -7.98<br>-14.42           | -1.13<br>- <i>10.36</i> | -23.47<br>+5.06  | -7.69<br>-14.81           | -0.83<br>-10.75          |  |
| 6-311+G(d)                   | 174                             | -33.71<br>- <i>13.86</i>  | -14.20<br>-22.51 | -1.93<br>- <i>13.01</i> | -28.07<br>-6.22          | -12.27<br>- <i>1</i> 8.98 | -1.77<br>-12.22         | -28.95<br>-6.57  | -12.51<br>- <i>19.42</i>  | -1.73<br>- <i>12.32</i>  |  |
| Aug-cc-pVDZ                  | 129                             | -34.67<br>- <i>16.81</i>  | -14.4<br>-22.87  | -1.96<br>- <i>12.92</i> | -28.56<br>-7.96          | -12.34<br>- <i>19.11</i>  | -1.80<br>- <i>12.16</i> | -29.42<br>-8.08  | -12.49<br>- <i>1</i> 9.51 | -1.68<br>- <i>12.29</i>  |  |
| Aug-cc-pVTZ                  | 279                             | -34.38<br>-15.19          | -14.1<br>-22.66  | -20.01<br>-12.90        | -28.5<br>-7.12           | -12.2<br>- <i>19.08</i>   | -1.87<br>- <i>12.16</i> | -29.49<br>-7.56  | -12.45<br>- <i>1</i> 9.58 | -1.75<br>-12.28          |  |
| Aug-cc-pVQZ                  | 420                             | -34.3<br>- <i>15.11</i>   | -14<br>-22.56    | -20.24<br>-12.88        | -28.47<br>-7.1           | -12.12<br>- <i>19.01</i>  | -1.89<br>-12.15         | -29.15<br>-7.08  | -12.25<br>- <i>19.34</i>  | -1.71<br>- <i>12.23</i>  |  |

| Table S | 5-3 |
|---------|-----|
|---------|-----|

| $Ag_3^+$          |                                 | BP86            |                          |                         | B3LYP           |                          |                         | M06             |                          |                         |
|-------------------|---------------------------------|-----------------|--------------------------|-------------------------|-----------------|--------------------------|-------------------------|-----------------|--------------------------|-------------------------|
| Basis sets        | Number<br>of basis<br>functions | NICS(0)         | NICS(1)                  | NICS(2)                 | NICS(0)         | NICS(1)                  | NICS(2)                 | NICS(0)         | NICS(1)                  | NICS(2)                 |
| Aug-cc-pVDZ-PP    | 162                             | -28.43<br>-1.90 | -13.49<br>- <i>18.18</i> | -2.42<br>-15.07         | -25.91<br>+0.07 | -12.58<br>- <i>16.36</i> | -2.37<br>-14.37         | -25.88<br>+0.27 | -12.74<br>- <i>16.23</i> | -2.31<br>- <i>14.30</i> |
| Aug-cc-pVTZ-PP    | 264                             | -27.61<br>-0.61 | -12.82<br>-17.45         | -2.29<br>-14.85         | -25.15<br>+1.24 | -11.97<br>- <i>15.69</i> | -2.25<br>-14.17         | -25.88<br>+0.97 | -12.74<br>-15.88         | -2.31<br>- <i>14.24</i> |
| Lan12DZ           | 66                              | -25.36<br>+1.12 | -12.51<br>- <i>16.08</i> | -2.04<br>-14.59         | -23.51<br>+2.38 | -11.85<br>- <i>14.65</i> | -2.06<br>-13.96         | -24.02<br>+2.04 | -12.06<br>- <i>14.94</i> | -1.99<br>-14.02         |
| Lanl2TZ           | 105                             | -26.09<br>-0.01 | -12.73<br>- <i>16.55</i> | -2.13<br>- <i>14.63</i> | -24.09<br>+1.60 | -12.01<br>- <i>15.03</i> | -2.12<br>- <i>14.01</i> | -24.38<br>+1.32 | -12.14<br>- <i>15.09</i> | -2.03<br>- <i>13.99</i> |
| Lanl2TZ(f)        | 126                             | -26.19<br>-0.04 | -12.77<br>- <i>16.61</i> | -2.12<br>- <i>14.64</i> | -24.14<br>+1.54 | -12.04<br>- <i>15.06</i> | -2.12<br>- <i>14.01</i> | -24.40<br>+1.32 | -12.14<br>- <i>15.10</i> | -2.02<br>- <i>13.98</i> |
| DZVP(DFT orbital) | 108                             | -22.61<br>+4.28 | -11.82<br>- <i>14.08</i> | -2.47<br>-14.13         | -20.98<br>+5.11 | -11.16<br>- <i>12.75</i> | -2.42<br>-13.51         | -22.45<br>+4.08 | -11.90<br>- <i>13.69</i> | -2.49<br>- <i>13.83</i> |
| cc-pVDZ-PP        | 114                             | -27.83<br>-1.77 | -13.29<br>- <i>17.72</i> | -2.43<br>- <i>14.93</i> | -25.25<br>+0.52 | -12.31<br>- <i>15.79</i> | -2.34<br>-14.18         | -25.37<br>+0.43 | -12.46<br>- <i>15.76</i> | -2.27<br>-14.15         |
| cc-pVTZ-PP        | 189                             | -27.67<br>-1.29 | -13.05<br>- <i>17.59</i> | -2.40<br>- <i>14.92</i> | -25.21<br>+0.68 | -12.14<br>- <i>15.76</i> | -2.32<br>-14.20         | -25.27<br>+0.47 | -12.43<br>- <i>15.82</i> | -2.21<br>- <i>14.18</i> |
| Def2-TZVP         | 120                             | -26.98<br>-0.72 | -13.02<br>- <i>17.17</i> | -2.22<br>-14.72         | -24.63<br>+1.15 | -12.10<br>- <i>15.44</i> | -2.15<br>- <i>14.03</i> | -24.95<br>+0.87 | -12.31<br>- <i>15.52</i> | -2.12<br>- <i>14.01</i> |
| Def2-TZVPP        | 168                             | -27.14<br>-0.75 | -13.03<br>- <i>17.28</i> | -2.18<br>- <i>14.75</i> | -24.80<br>+1.07 | -12.14<br>- <i>15.58</i> | -2.13<br>- <i>14.08</i> | -25.01<br>+0.84 | -12.29<br>-15.56         | -2.09<br>-14.01         |
| Def2-QZVP         | 216                             | -27.45<br>-0.85 | -12.70<br>-17.33         | -2.34<br>-14.79         | -25.07<br>+0.90 | -11.90<br>- <i>15.61</i> | -2.29<br>-14.12         | - 25.08<br>+0.8 | -12.13<br>- <i>15.60</i> | -2.19<br>-14.10         |
| Def2-QZVPP        | 264                             | -27.46<br>-0.73 | -12.70<br>-17.23         | -2.29<br>-14.74         | -25.09<br>+1.01 | -11.91<br>- <i>15.55</i> | -2.27<br>-14.10         | -24.98<br>+1.01 | -12.09<br>-15.43         | -2.18<br>- <i>14.03</i> |

| Au <sub>3</sub> <sup>+</sup> | 3 <sup>+</sup> BP86             |                 | B3LYP                    |                         |                 | M06                       |                         |                 |                           |                          |
|------------------------------|---------------------------------|-----------------|--------------------------|-------------------------|-----------------|---------------------------|-------------------------|-----------------|---------------------------|--------------------------|
| Basis sets                   | Number<br>of basis<br>functions | NICS(0)         | NICS(1)                  | NICS(2)                 | NICS(0)         | NICS(1)                   | NICS(2)                 | NICS(0)         | NICS(1)                   | NICS(2)                  |
| Aug-cc-pVDZ-PP               | 162                             | -32.99<br>-0.23 | -13.45<br>- <i>18.67</i> | -1.83<br>- <i>16.40</i> | -30.21<br>+2.67 | -12.63<br>-17.10          | -1.84<br>- <i>16.01</i> | -28.74<br>+3.02 | -12.55<br>- <i>16.36</i>  | -1.85<br>- <i>15.72</i>  |
| Aug-cc-pVTZ-PP               | 264                             | *               | *                        | *                       | -33.44<br>-1.80 | -14.34<br>- <i>1</i> 9.83 | -2.46<br>- <i>16.94</i> | -31.51<br>-0.41 | -14.03<br><i>-18.57</i>   | -2.27<br>-16.50          |
| Lan12DZ                      | 66                              | -35.89<br>-6.10 | -15.94<br>-21.86         | -2.78<br>-17.96         | -33.07<br>-3.25 | -14.97<br>-20.08          | -2.70<br>-17.40         | -32.05<br>-3.26 | -15.01<br>- <i>1</i> 9.69 | -2.80<br>-17.23          |
| Lan12TZ                      | 105                             | -36.36<br>-7.12 | -16.15<br>-22.39         | -3.02<br>-17.90         | -33.55<br>-3.82 | -15.15<br>-20.48          | -2.89<br>-17.39         | -32.13<br>-3.54 | -15.09<br>- <i>1</i> 9.85 | -2.90<br>-17.15          |
| Lanl2TZ(f)                   | 126                             | -36.35<br>-6.24 | -16.08<br>-22.20         | -2.96<br>-17.85         | -33.59<br>-3.18 | -15.11<br>-20.40          | -2.85<br>-17.38         | -32.03<br>-2.90 | -15.00<br>- <i>19.73</i>  | -2.84<br>-17.12          |
| cc-pVDZ-PP                   | 114                             | -35.33<br>-4.76 | -15.43<br><i>-21.15</i>  | -2.66<br>-17.40         | -32.33<br>-1.32 | -14.37<br>- <i>19.24</i>  | -2.57<br>-16.87         | -30.91<br>-1.06 | -14.19<br>- <i>18.57</i>  | -2.54<br>- <i>16.60</i>  |
| cc-pVTZ-PP                   | 189                             | -34.88<br>-2.30 | -14.67<br>-20.61         | -2.45<br>- <i>17.08</i> | -32.06<br>+0.59 | -13.82<br>- <i>1</i> 8.93 | -2.45<br>-16.69         | -30.33<br>+1.46 | - 13.67<br><i>-17.97</i>  | -2.30<br>-16.35          |
| Def2-TZVP                    | 120                             | -32.23<br>+0.92 | -13.31<br>- <i>18.46</i> | -2.14<br>- <i>16.44</i> | -29.94<br>+2.90 | -12.71<br>- <i>17.27</i>  | -2.17<br>- <i>16.18</i> | -28.72<br>+2.77 | -12.66<br>- <i>1</i> 6.79 | - 2.15<br>- <i>15.94</i> |
| Def2-TZVPP                   | 168                             | -32.52<br>+1.06 | -13.15<br>- <i>18.52</i> | -2.05<br>- <i>16.42</i> | -30.20<br>+3.07 | -12.60<br>-17.35          | -2.10<br>- <i>16.20</i> | -28.82<br>+3.10 | -12.51<br>- <i>16.74</i>  | -2.08<br>-15.91          |
| Def2-QZVP                    | 216                             | -34.39<br>-1.56 | -14.19<br>- <i>19.91</i> | -2.29<br>16.85          | -31.80<br>+0.93 | -13.50<br>-18.50          | -2.32<br>-16.54         | -30.21<br>+1.33 | -13.36<br>-17.72          | -2.20<br>-16.20          |
| Def2-QZVPP                   | 264                             | -34.50<br>-1.39 | -14.35<br>-20.16         | -2.33<br>-16.92         | -31.85<br>+1.15 | -13.63<br>-18.68          | -2.35<br>-16.58         | -30.14<br>+1.92 | -13.43<br>- <i>1</i> 7.79 | -2.23<br>-16.23          |

\*At this level of theory Self Consistent Field (SCF) calculations did not converge.

| Sc <sub>3</sub> |                                 | BP86                     |                  |                 | B3LYP                    |                  |                  | M06               |                  |                  |
|-----------------|---------------------------------|--------------------------|------------------|-----------------|--------------------------|------------------|------------------|-------------------|------------------|------------------|
| Basis sets      | Number<br>of basis<br>functions | NICS(0)                  | NICS(1)          | NICS(2)         | NICS(0)                  | NICS(1)          | NICS(2)          | NICS(0)           | NICS(1)          | NICS(2)          |
| Lan12DZ         | 66                              | -15.88<br>- <i>50.17</i> | -11.25<br>+15.73 | -2.06<br>+29.52 | -27.82<br>-49.98         | -18.49<br>+16.26 | -4.66<br>+29.64  | -38.59<br>-62.91  | -32.81<br>+35.26 | -10.03<br>+49.21 |
| Lan12TZ         | 105                             | -9.05<br>-42.07          | -8.32<br>+14.50  | -2.17<br>+26.52 | -17.12<br>-35.84         | -14.34<br>+15.42 | -4.83<br>+25.07  | -27.95<br>-45.88  | -26.81<br>+35.50 | -10.01<br>+45.28 |
| Lanl2TZ(f)      | 126                             | -11.58<br>-42.58         | -9.09<br>+14.62  | -2.19<br>+26.65 | -19.97<br>- <i>37.05</i> | -15.36<br>+15.08 | -4.98<br>+24.97  | -34.45<br>-48.02  | -28.48<br>+34.54 | -10.02<br>+44.78 |
| Def2-TZVP       | 135                             | -9.16<br>-50.32          | -14.12<br>+9.80  | -6.62<br>+25.17 | -17.58<br>-44.94         | -21.84<br>+8.32  | -10.21<br>+21.80 | -20.56<br>-44.69  | -33.10<br>+16.39 | -16.66<br>+28.56 |
| Def2-TZVPP      | 192                             | -14.03<br>-51.15         | -15.28<br>+10.81 | -5.60<br>+25.66 | -22.64<br>-46.68         | -22.93<br>+9.01  | -9.23<br>+22.30  | -20.70<br>-47.19  | -32.30<br>+16.93 | -15.01<br>+28.87 |
| Def2-QZVP       | 252                             | -16.55<br>-52.08         | -16.10<br>+11.00 | -5.30<br>+26.01 | -25.54<br>-48.49         | -24.07<br>+8.76  | -9.06<br>+22.58  | -21.80<br>-48.80  | -33.65<br>+17.05 | -14.70<br>+30.03 |
| Def2-QZVPP      | 279                             | -16.09<br>-51.62         | -16.03<br>+11.05 | -5.37<br>+26.01 | -25.06<br>-48.03         | -23.98<br>+8.86  | -9.12<br>+22.58  | -22.23<br>-48.90  | -33.66<br>+17.47 | -15<br>+29.87    |
| 6-311G(d)       | 138                             | -35.18<br>-43.12         | -28.98<br>+6.87  | -8.74<br>+21.12 | -47.94<br>- <i>37.53</i> | -37.82<br>+7.66  | -11.87<br>+19.87 | -147.58<br>-31.66 | -78.87<br>+15.25 | -24.57<br>+25.46 |
| 6-311+G(d)      | 174                             | -15.89<br>-51.92         | -15.61<br>+10.43 | -5.18<br>+25.67 | -25.07<br>-48.13         | -23.29<br>+8.75  | -8.67<br>+22.59  | -22.18<br>-49.22  | -33.58<br>+15.96 | -14.67<br>+29.29 |
| Aug-cc-pVDZ     | 129                             | -16.67<br>-52.48         | -15.46<br>+11.35 | -4.88<br>+26.17 | -25.42<br>-48.71         | -22.85<br>+9.75  | -8.43<br>+23.23  | -24.08<br>-49.63  | -32.71<br>+17.76 | -14.35<br>+30.09 |
| Aug-cc-pVTZ     | 279                             | -16.25<br>-51.7          | -15.88<br>+11.01 | -5.45<br>+25.82 | -25.06<br>-47.97         | -23.67<br>+8.79  | -9.15<br>+22.30  | -22.58<br>-47.65  | -33.18<br>+17.02 | -15.04<br>+29.20 |
| Aug-cc-pVQZ     | 420                             | -16.6<br>- <i>50.81</i>  | -16.06<br>+11.5  | -5.36<br>+26.04 | -25.64<br>-47.53         | -23.99<br>+9.02  | -9.12<br>+22.49  | -23.76<br>-45.93  | -34.3<br>+18     | -15.19<br>+29.73 |

| Y <sub>3</sub>    |                                 | BP86                     |                  |                 | B3LYP                     |                 |                 | M06                      |                 |                  |
|-------------------|---------------------------------|--------------------------|------------------|-----------------|---------------------------|-----------------|-----------------|--------------------------|-----------------|------------------|
| Basis sets        | Number<br>of basis<br>functions | NICS(0)                  | NICS(1)          | NICS(2)         | NICS(0)                   | NICS(1)         | NICS(2)         | NICS(0)                  | NICS(1)         | NICS(2)          |
| Lan12DZ           | 66                              | -11.98<br>-22.60         | -14.43<br>-0.29  | -6.50<br>+12.39 | -13.13<br>- <i>1</i> 8.52 | -16.72<br>-0.40 | -8.26<br>+10.11 | -11.40<br>- <i>11.31</i> | -20.29<br>+5.65 | -11.38<br>+14.62 |
| Lanl2TZ           | 105                             | -10.52<br>-18.61         | -13.45<br>+0.95  | -6.42<br>+11.42 | -10.80<br>-14.03          | -15.44<br>+0.97 | -8.21<br>+9.15  | -10.28<br>-6.89          | -18.90<br>+7.22 | -11.12<br>+13.73 |
| Lanl2TZ(f)        | 126                             | -12.41<br>- <i>19.35</i> | -14.11<br>+0.92  | -6.43<br>+11.56 | -12.95<br>-15.43          | -16.36<br>+0.45 | -8.36<br>+9.03  | -13.29<br>-8.45          | -20.08<br>+6.51 | -11.25<br>+13.44 |
| DZVP (DFTorbital) | 108                             | -6.79<br>-16.46          | -11.22<br>+5.07  | -6.48<br>+15.34 | -7.15<br>-12.63           | -13.62<br>+3.63 | -8.61<br>+11.89 | -6.72<br>-6.89           | -18.08<br>+6.41 | -12.56<br>+12.76 |
| Def2-TZVP         | 120                             | -11.60<br>- <i>19.70</i> | -14.88<br>-0.64  | -7.39<br>+9.92  | -11.78<br>- <i>16.03</i>  | -17.11<br>-1.14 | -9.38<br>+7.50  | -11.32<br>-11.04         | -20.77<br>+4.19 | -12.30<br>+11.58 |
| Def2-TZVPP        | 168                             | -12.05<br>- <i>19.91</i> | -15.13<br>- 0.71 | -7.37<br>+9.88  | -12.22<br>-16.34          | -17.36<br>-1.32 | -9.46<br>+7.38  | -12.07<br>-11.67         | -21.12<br>+3.71 | -12.48<br>+11.59 |
| Def2-QZVP         | 216                             | -12.74<br>-19.90         | -15.35<br>-0.56  | -7.16<br>+9.99  | -13.04<br>- <i>16.37</i>  | -17.66<br>-1.26 | -9.27<br>+7.39  | -12.86<br>-10.73         | -21.49<br>+3.41 | -12.36<br>+11.17 |
| Def2-QZVPP        | 243                             | -12.56<br>-19.19         | -15.23<br>-0.34  | -7.11<br>+10.02 | -12.84<br>-15.78          | -17.54<br>-1.08 | -9.23<br>+7.42  | -12.90<br>- <i>10.83</i> | -21.31<br>+3.57 | -12.36<br>+11.23 |

| La <sub>3</sub> |                                 | BP86                     |                  |                 | B3LYP                    |                  |                 | M06             |                  |                 |
|-----------------|---------------------------------|--------------------------|------------------|-----------------|--------------------------|------------------|-----------------|-----------------|------------------|-----------------|
| Basis sets      | Number<br>of basis<br>functions | NICS(0)                  | NICS(1)          | NICS(2)         | NICS(0)                  | NICS(1)          | NICS(2)         | NICS(0)         | NICS(1)          | NICS(2)         |
| Lan12DZ         | 66                              | -7.36<br>-11.85          | -7.71<br>+15.28  | -2.93<br>+28.64 | -11.18<br>- <i>13.27</i> | -10.95<br>+12.32 | -4.52<br>+26.51 | -25.28<br>+4.91 | -18.85<br>+18.98 | -8.97<br>+27.09 |
| Lanl2TZ         | 105                             | -7.70<br>-11.51          | -7.99<br>+14.15  | -2.96<br>+26.95 | -11.04<br>- <i>11.80</i> | -11.00<br>+11.48 | -4.63<br>+24.44 | -26.38<br>+8.49 | -18.14<br>+20.08 | -7.99<br>+25.91 |
| Lanl2TZ(f)      | 126                             | -10.51<br>-9.75          | -8.41<br>+17.17  | -2.30<br>+29.27 | - 14.53<br>-11.69        | -12.00<br>+13.17 | -4.28<br>+26.08 | -31.29<br>+8.33 | -19.68<br>+21.06 | -7.68<br>+26.96 |
| Def2-TZVP       | 120                             | -11.08<br>- <i>10.50</i> | -10.13<br>+13.67 | -3.70<br>+25.08 | -14.78<br>-11.84         | -13.69<br>+9.67  | -5.79<br>+21.47 | -27.72<br>-0.66 | -20.69<br>+14.25 | -9.33<br>+22.73 |
| Def2-TZVPP      | 168                             | -15.90<br>-11.91         | -13.69<br>+10.30 | -5.57<br>+22.01 | -12.07<br>-9.94          | -10.09<br>+14.72 | -3.34<br>+25.79 | -29.06<br>-1.84 | -20.52<br>+14.09 | -9.02<br>+22.88 |
| Def2-QZVP       | 216                             | -9.57<br>-6.20           | -8.02<br>+18.23  | -2.19<br>+27.70 | -13.24<br>-8.47          | -11.78<br>+13.14 | -4.67<br>+23.41 | -29.20<br>-4.68 | -20.04<br>+13.58 | -8.44<br>+23.01 |
| Def2-QZVPP      | 243                             | -11.12<br>-11.77         | -8.47<br>+16.70  | -2.14<br>+27.85 | -14.75<br>- <i>13.62</i> | -12.19<br>+11.74 | -4.59<br>+23.54 | -29.33<br>-5.92 | -20.06<br>+13.39 | -8.34<br>+23.22 |

| Al4 <sup>2-</sup>     |                                 | BP86             |                  |                          | B3LYP            |                  |                           | M06              |                          |                           |
|-----------------------|---------------------------------|------------------|------------------|--------------------------|------------------|------------------|---------------------------|------------------|--------------------------|---------------------------|
| Basis sets            | Number<br>of basis<br>functions | NICS(0)          | NICS(1)          | NICS(2)                  | NICS(0)          | NICS(1)          | NICS(2)                   | NICS(0)          | NICS(1)                  | NICS(2)                   |
| Lanl2DZ               | 32                              | -25.60<br>-63.39 | -22.28<br>-53.03 | -12.56<br>- <i>33.12</i> | -27.43<br>-63.50 | -23.38<br>-53.17 | -12.94<br>-33.27          | -24.55<br>-64.57 | -21.56<br>- <i>53.95</i> | -12.45<br>-33.75          |
| DZVP<br>(DFT orbital) | 72                              | -31.26<br>-66.69 | -25.81<br>-55.80 | -13.68<br>- <i>34.47</i> | -33.55<br>-67.09 | -27.16<br>-56.12 | -14.19<br>- <i>34.</i> 68 | -33.65<br>-65.86 | -26.96<br>-55.20         | -13.93<br>-34.23          |
| Def2-TZVP             | 148                             | -31.90<br>-66.00 | -26.51<br>-55.10 | -14.07<br>- <i>33.84</i> | -34.61<br>-66.37 | -28.08<br>-55.38 | -14.54<br>- <i>33.99</i>  | -35.31<br>-65.39 | -28.23<br>-55.07         | -14.24<br>- <i>33</i> .79 |
| Def2-TZVPP            | 168                             | -31.96<br>-66.23 | -26.54<br>-55.24 | -14.09<br>- <i>33.89</i> | -34.64<br>-66.57 | -28.09<br>-55.50 | -14.55<br>- <i>34.03</i>  | -35.36<br>-65.64 | -28.23<br>-55.20         | -14.26<br><i>-33.83</i>   |
| Def2-QZVP             | 280                             | -33.30<br>-66.35 | -26.94<br>-55.28 | -14.35<br>- <i>33.99</i> | -36.24<br>-66.56 | -28.57<br>-55.41 | -14.91<br>- <i>34.09</i>  | -35.90<br>-63.55 | -27.95<br>-53.45         | -14.66<br>- <i>33.22</i>  |
| Def2-QZVPP            | 280                             | -33.30<br>-66.35 | -26.94<br>-55.28 | -14.35<br>- <i>33.99</i> | -36.24<br>-66.56 | -28.57<br>-55.41 | -14.91<br>- <i>34.09</i>  | -35.90<br>-63.55 | -27.95<br>-53.45         | -14.66<br>- <i>33.22</i>  |
| 6-311G(d)             | 104                             | -30.65<br>-65.98 | -25.46<br>-55.15 | -13.83<br><i>-34.19</i>  | -32.77<br>-66.18 | -26.69<br>-55.27 | -14.32<br>- <i>34.30</i>  | -33.09<br>-65.53 | -26.55<br>-54.50         | -14.12<br>- <i>33.83</i>  |
| 6-311+G(d)            | 120                             | -32.21<br>-66.01 | -26.07<br>-54.81 | -14.42<br>-33.71         | -34.46<br>-66.18 | -27.39<br>-54.88 | -15.03<br>- <i>33.74</i>  | -34.46<br>-66.04 | -27.17<br>-54.62         | -15.06<br>- <i>33.33</i>  |

Table S-9

| Ga4 <sup>2-</sup> |                                 | BP86             |                  |                           | B3LYP            |                  |                           | M06              |                         |                           |
|-------------------|---------------------------------|------------------|------------------|---------------------------|------------------|------------------|---------------------------|------------------|-------------------------|---------------------------|
| Basis sets        | Number<br>of basis<br>functions | NICS(0)          | NICS(1)          | NICS(2)                   | NICS(0)          | NICS(1)          | NICS(2)                   | NICS(0)          | NICS(1)                 | NICS(2)                   |
| Aug-cc-pVDZ-PP    | 128                             | -37.05<br>-67.43 | -29.29<br>-59.96 | -15.72<br>-38.19          | -38.45<br>-66.90 | -30.22<br>-59.50 | -16.24<br>- <i>3</i> 8.07 | -33.91<br>-63.42 | -27.98<br>-56.89        | -16.13<br><i>-36.84</i>   |
| Aug-cc-pVTZ-PP    | 220                             | -38.95<br>-70.79 | -30.15<br>-61.72 | -15.81<br>- <i>3</i> 8.79 | -40.34<br>-69.99 | -31.05<br>-61.12 | -16.33<br>- <i>3</i> 8.62 | -30.72<br>-66.63 | -26.44<br>-58.59        | -16.15<br>- <i>37.61</i>  |
| Lan12DZ           | 32                              | -25.19<br>-64.32 | -22.39<br>-53.62 | -12.73<br>-33.32          | -26.65<br>-64.35 | -23.28<br>-53.75 | -13.11<br><i>-33.49</i>   | -26.27<br>-64.30 | -22.64<br><i>-53.73</i> | -12.66<br>- <i>33.60</i>  |
| DZVP(DFT orbital) | 108                             | -33.70<br>-62.23 | -27.80<br>-57.57 | -14.47<br>-37.67          | -35.40<br>-62.29 | -28.86<br>-57.57 | -14.95<br>- <i>3</i> 7.79 | -32.19<br>-60.17 | -27.39<br>-56.16        | -14.93<br>- <i>37.37</i>  |
| cc-pVDZ-PP        | 92                              | -34.01<br>-66.57 | -28.27<br>-60.00 | -14.77<br>-38.32          | -35.47<br>-66.56 | -29.23<br>-59.97 | -15.16<br>-38.39          | -34.61<br>-66.01 | -28.84<br>-59.69        | -15.22<br>- <i>3</i> 8.46 |
| cc-pVTZ-PP        | 156                             | -36.30<br>-68.87 | -29.13<br>-60.59 | -15.38<br><i>-38.41</i>   | -37.78<br>-68.81 | -30.12<br>-60.52 | -15.82<br>- <i>3</i> 8.46 | -34.49<br>-66.16 | -28.27<br>-58.48        | -15.64<br>- <i>3</i> 7.66 |
| Def2-TZVP         | 192                             | -33.61<br>-63.46 | -27.62<br>-57.73 | -14.47<br><i>-37.14</i>   | -35.38<br>-63.76 | -28.76<br>-57.89 | -14.93<br>- <i>3</i> 7.29 | -34.86<br>-63.68 | -28.56<br>-57.82        | -15.13<br>- <i>37.34</i>  |
| Def2-TZVPP        | 192                             | -33.61<br>-63.46 | -27.62<br>-57.73 | -14.47<br>- <i>37.14</i>  | -35.38<br>-63.76 | -28.76<br>-57.89 | -14.93<br>- <i>3</i> 7.29 | -34.86<br>-63.68 | - 28.56<br>-57.82       | -15.13<br>- <i>37.34</i>  |
| Def2-QZVP         | 300                             | -34.91<br>-63.39 | -28.12<br>-57.60 | -14.75<br>- <i>3</i> 7.27 | -36.76<br>-63.57 | -29.27<br>-57.63 | -15.23<br>- <i>37.36</i>  | -34.01<br>-61.48 | -27.76<br>-55.91        | -15.23<br>- <i>3</i> 6.68 |
| Def2-QZVPP        | 356                             | -34.93<br>-63.39 | -28.13<br>-57.61 | -14.76<br>- <i>3</i> 7.28 | -36.77<br>-63.58 | -29.28<br>-57.64 | -15.24<br><i>-37.37</i>   | -34.04<br>-61.53 | -27.78<br>-55.95        | -15.24<br>- <i>36.70</i>  |
| 6-311G(d)         | 176                             | -33.69<br>-62.58 | -27.59<br>-57.45 | -14.62<br>- <i>37.42</i>  | -35.26<br>-62.45 | -28.55<br>-57.27 | -15.05<br>- <i>37.45</i>  | -32.12<br>-60.35 | -26.87<br>-55.60        | -14.96<br>- <i>3</i> 6.89 |
| 6-311+G(d)        | 192                             | -42.40<br>-76.86 | -32.17<br>-67.62 | -15.95<br>-41.90          | -39.18<br>-63.39 | -29.86<br>-57.68 | -15.12<br>- <i>3</i> 7.29 | -31.44<br>-57.68 | -26.39<br>-53.40        | -15.15<br>- <i>35.51</i>  |

| Table | S-10 |
|-------|------|
|-------|------|

| Cu <sub>4</sub> <sup>2-</sup> |                                 | BP86                      |                           |                 | B3LYP                     |                  |                         | M06                       |                         |                         |
|-------------------------------|---------------------------------|---------------------------|---------------------------|-----------------|---------------------------|------------------|-------------------------|---------------------------|-------------------------|-------------------------|
| Basis sets                    | Number<br>of basis<br>functions | NICS(0)                   | NICS(1)                   | NICS(2)         | NICS(0)                   | NICS(1)          | NICS(2)                 | NICS(0)                   | NICS(1)                 | NICS(2)                 |
| Aug-cc-pVDZ-PP                | 216                             | -27.43<br>- <i>3</i> 6.09 | -15.38<br>- <i>33.59</i>  | -6.28<br>-22.21 | -19.86<br>-25.75          | -11.90<br>-29.13 | -5.53<br>-21.61         | -18.67<br><i>-20</i> .88  | -11.28<br>-26.25        | -5.42<br>-20.63         |
| Aug-cc-pVTZ-PP                | 352                             | -26.03<br>- <i>34.</i> 68 | -14.55<br>- <i>3</i> 2.68 | -5.80<br>-21.79 | -18.17<br>-24.10          | -10.80<br>-28.01 | -4.98<br>-21.16         | *                         | *                       | *                       |
| Lan12DZ                       | 88                              | -19.39<br>-24.37          | -11.25<br>-28.31          | -5.36<br>-21.65 | -14.56<br>- <i>1</i> 8.81 | -8.84<br>-25.47  | -4.69<br>-21.00         | - 14.96<br>- <i>16.29</i> | -9.14<br><i>-24.17</i>  | -5.08<br>-20.58         |
| Lanl2TZ                       | 140                             | -22.01<br>-27.06          | -12.56<br>-29.77          | -5.50<br>-21.89 | -16.17<br>-20.07          | -9.64<br>-26.41  | -4.73<br>-21.22         | -16.72<br>- <i>17.63</i>  | -10.11<br>-25.05        | -5.21<br>-20.75         |
| Lanl2TZ(f)                    | 168                             | -21.98<br>-27.00          | -12.54<br>-29.74          | -5.49<br>-21.88 | -16.15<br>-20.05          | - 9.63<br>-26.40 | -4.73<br>-21.22         | -16.70<br>-17.70          | -10.09<br>-25.03        | -5.20<br>-20.74         |
| DZVP(DFT orbital)             | 96                              | -19.05<br>-24.10          | -13.47<br>-27.46          | -6.48<br>-20.44 | -16.37<br>-20.82          | -12.12<br>-25.32 | -6.32<br>- <i>19.92</i> | -16.74<br>-20.81          | -12.33<br>-25.95        | -6.40<br>- <i>20.23</i> |
| cc-pVDZ-PP                    | 154                             | *                         | *                         | *               | *                         | *                | *                       | -17.68<br><i>- 24.16</i>  | -10.70<br>-28.60        | -5.71<br>-21.65         |
| cc-pVTZ-PP                    | 352                             | -24.83<br>- <i>34.18</i>  | -14.52<br>- <i>33.</i> 07 | -5.85<br>-22.07 | -17.57<br>-24.24          | -10.88<br>-28.35 | -5.06<br>-21.26         | -16.94<br>-21.59          | -10.64<br>-26.92        | -5.09<br>-20.82         |
| Def2-TZVP                     | 180                             | -21.06<br>-24.82          | -13.06<br>-27.38          | -6.02<br>-20.47 | -16.96<br>- <i>19.50</i>  | -11.40<br>-24.77 | -5.89<br>-20.09         | -16.13<br>- <i>17.66</i>  | -10.93<br>-24.05        | -5.85<br>-20.01         |
| Def2-TZVPP                    | 256                             | -20.00<br>-24.92          | -12.19<br>-27.69          | -5.68<br>-20.66 | -15.53<br>- <i>19.41</i>  | -10.26<br>-25.04 | -5.50<br>-20.30         | -14.54<br>- <i>17.39</i>  | -9.64<br><i>-24.31</i>  | -5.44<br><i>-20.25</i>  |
| Def2-QZVP                     | 336                             | -19.24<br>-25.17          | -11.52<br>-28.37          | -5.16<br>-20.94 | -14.04<br>- <i>19.</i> 28 | -9.04<br>-25.43  | -4.64<br>-20.52         | - 13.71<br>- <i>16.42</i> | -8.98<br><i>-24.20</i>  | - 4.87<br>-20.25        |
| Def2-QZVPP                    | 400                             | -19.11<br>-25.12          | -11.50<br>-28.31          | -5.13<br>-20.93 | -13.92<br>- <i>19.23</i>  | -9.05<br>-25.42  | -4.64<br>-20.53         | -13.58<br>- 16.34         | -8.86<br>-23.98         | -4.81<br>-20.19         |
| 6-311G(d)                     | 184                             | -9.84<br>-19.15           | -5.27<br>-18.88           | -3.67<br>-12.94 | -13.91<br>- <i>11.56</i>  | -8.58<br>-20.28  | -5.09<br>- <i>16.98</i> | -13.60<br>- <i>10.21</i>  | -8.12<br>- <i>19.47</i> | -4.86<br>- <i>16.51</i> |
| 6-311+G(d)                    | 232                             | -19.65<br>-24.97          | -12.00<br>-28.53          | -4.97<br>-20.94 | -14.25<br>- <i>19.02</i>  | -9.32<br>-25.52  | -4.47<br>-20.50         | -13.38<br>- <i>14.</i> 88 | -8.93<br>-22.80         | -4.39<br>- <i>19.35</i> |
| Aug-cc-pVDZ                   | 172                             | -19.81<br>-26.47          | -11.67<br>-28.6           | -5.29<br>-20.94 | -14.37<br>-20.07          | -9.11<br>-25.61  | -4.91<br>-20.61         | -13.68<br>- <i>17.89</i>  | -8.86<br>-24.59         | -4.89<br>-20.37         |
| Aug-cc-pVTZ-PP                | 372                             | -19.82<br>-25.76          | -11.68<br>-28.68          | -5.09<br>-20.89 | -14.28<br>- <i>19.56</i>  | -9.12<br>-25.77  | -4.62<br>-20.59         | -12.8<br>- <i>14.63</i>   | -8.23<br>-22.74         | -4.43<br>- <i>19.48</i> |

\*At these levels of theory Self Consistent Field (SCF) calculations did not converge.

| Table | S-11 |
|-------|------|
|-------|------|

| Ag4 <sup>2-</sup> |                                 | BP86                     |                  |                 | B3LYP                    |                         |                 | M06             |                          |                         |
|-------------------|---------------------------------|--------------------------|------------------|-----------------|--------------------------|-------------------------|-----------------|-----------------|--------------------------|-------------------------|
| Basis sets        | Number<br>of basis<br>functions | NICS(0)                  | NICS(1)          | NICS(2)         | NICS(0)                  | NICS(1)                 | NICS(2)         | NICS(0)         | NICS(1)                  | NICS(2)                 |
| Aug-cc-pVDZ-PP    | 216                             | -14.98<br>- <i>10.83</i> | -10.22<br>-21.07 | -5.29<br>-21.37 | -13.07<br>- <i>10.34</i> | -9.22<br>-20.04         | -5.05<br>-20.78 | -12.74<br>-8.57 | -9.08<br>- 18.99         | -5.01<br>-20.38         |
| Aug-cc-pVTZ-PP    | 352                             | -14.34<br>-9.61          | -9.72<br>-20.31  | -5.03<br>-21.04 | -12.46<br>-9.29          | -8.7 <b>4</b><br>-19.40 | -4.82<br>-20.53 | -11.95<br>-9.00 | -8.70<br>-19.65          | -5.01<br>-20.94         |
| Lan12DZ           | 88                              | -13.38<br>-8.50          | -9.28<br>-19.06  | -5.00<br>-20.70 | -11.88<br>-8.60          | -8.45<br>-18.39         | -4.73<br>-20.13 | -12.60<br>-7.11 | -9.04<br>- <i>17.86</i>  | - 5.10<br>- 20.11       |
| Lan12TZ           | 140                             | -14.13<br>-9.84          | -9.72<br>-20.08  | -5.00<br>-21.05 | -12.35<br>-9.35          | -8.73<br>-19.06         | -4.73<br>-20.41 | -12.91<br>-7.90 | -9.28<br>-18.36          | -5.23<br>- 20.33        |
| Lanl2TZ(f)        | 168                             | -14.09<br>-9.74          | -9.70<br>-20.06  | -4.99<br>-21.05 | -12.30<br>-9.26          | -8.69<br>-19.04         | -4.71<br>-20.41 | -12.85<br>-7.78 | -9.24<br>-18.31          | -5.21<br>-20.32         |
| DZVP(DFT orbital) | 144                             | -12.37<br>-9.11          | -9.74<br>-18.86  | -6.01<br>-20.42 | -11.39<br>-9.04          | -9.24<br>-17.83         | -5.94<br>-19.61 | -11.30<br>-7.80 | - 9.20<br>- <i>18.06</i> | -6.06<br>-20.26         |
| cc-pVDZ-PP        | 152                             | -14.42<br>- <i>10.90</i> | -9.99<br>-20.76  | -5.19<br>-21.15 | -12.46<br>- <i>10.27</i> | -8.90<br>-19.66         | -4.93<br>-20.47 | -12.96<br>-9.66 | -9.40<br><i>-19.53</i>   | - 5.18<br><i>-20.61</i> |
| cc-pVTZ-PP        | 252                             | -14.45<br>- <i>10.70</i> | -10.12<br>-20.89 | -5.18<br>-21.22 | -12.58<br>-10.24         | -9.08<br>-19.87         | -4.91<br>-20.61 | -12.71<br>-9.63 | -9.32<br>-19.76          | -5.18<br>-20.85         |
| Def2-TZVP         | 160                             | -14.04<br>- <i>10.95</i> | -9.75<br>-20.62  | -5.11<br>-21.05 | -12.28<br>-10.45         | -8.81<br>- <i>19.61</i> | -4.95<br>-20.43 | -12.65<br>-9.67 | -9.22<br><i>-19.4</i> 8  | - 5.21<br>-20.70        |
| Def2-TZVPP        | 224                             | -14.00<br>- <i>10.83</i> | -9.69<br>-20.66  | -5.07<br>-21.09 | -12.27<br>-10.43         | -8.77<br>-19.70         | -4.92<br>-20.50 | -12.57<br>-9.51 | -9.14<br><i>-19.49</i>   | -5.16<br>-20.74         |
| Def2-QZVP         | 288                             | -14.16<br>- <i>10.13</i> | -9.82<br>-20.52  | -5.09<br>-21.10 | -12.40<br>-9.82          | -8.90<br>-19.60         | -4.87<br>-20.55 | -12.33<br>-8.55 | -9.01<br>- <i>19.11</i>  | -5.07<br>-20.66         |
| Def2-QZVPP        | 352                             | -14.08<br>- <i>10.05</i> | -9.80<br>-20.56  | -5.11<br>-21.14 | -12.38<br>-9.78          | -8.90<br>-19.66         | -4.90<br>-20.61 | -12.15<br>-8.47 | -8.95<br>-19.01          | -5.06<br>-20.56         |

| Au4 <sup>2-</sup> |                                 | BP86            |                          |                 | B3LYP           |                           |                 | M06                     |                           |                 |
|-------------------|---------------------------------|-----------------|--------------------------|-----------------|-----------------|---------------------------|-----------------|-------------------------|---------------------------|-----------------|
| Basis sets        | Number<br>of basis<br>functions | NICS(0)         | NICS(1)                  | NICS(2)         | NICS(0)         | NICS(1)                   | NICS(2)         | NICS(0)                 | NICS(1)                   | NICS(2)         |
| Aug-cc-pVDZ-PP    | 216                             | -16.54<br>-4.69 | -10.57<br>-18.00         | -4.65<br>-20.53 | -15.23<br>-4.95 | -10.01<br>-17.75          | -4.67<br>-20.46 | - 14.05<br>-4.28        | -9.47<br>-16.74           | -4.56<br>-20.02 |
| Aug-cc-pVTZ-PP    | 352                             | -19.45<br>-9.84 | -12.58<br>-21.55         | -5.60<br>-22.32 | -18.06<br>-9.93 | -11.96<br>-21.23          | -5.61<br>-22.26 | - 15.87<br>-6           | -10.79<br>-17.97          | -5.20<br>-20.70 |
| Lan12DZ           | 88                              | -17.46<br>-5.27 | -11.69<br>- <i>17.58</i> | -5.25<br>-20.55 | -16.19<br>-5.63 | -11.10<br>- <i>17.38</i>  | -5.25<br>-20.41 | -16.42<br>- 6.74        | -11.46<br>- <i>1</i> 8.18 | -5.55<br>-20.89 |
| Lan12TZ           | 140                             | -18.75<br>-6.85 | -12.44<br>- <i>18.91</i> | -5.45<br>-21.08 | -17.30<br>-6.78 | -11.74<br>-18.55          | -5.44<br>-21.00 | -16.94<br>-7.76         | -11.76<br>- 18.89         | -5.68<br>-21.26 |
| Lanl2TZ(f)        | 168                             | -18.65<br>-6.32 | -12.36<br>-18.80         | -5.39<br>-21.09 | -17.21<br>-6.31 | -11.66<br>- <i>18.48</i>  | -5.38<br>-21.04 | -16.76<br>-7.25         | -11.62<br>- <i>1</i> 8.72 | -5.61<br>-21.25 |
| cc-pVDZ-PP        | 152                             | -18.01<br>-6.85 | -11.82<br>- <i>18.93</i> | -5.28<br>-20.98 | -16.48<br>-6.68 | -11.09<br>- <i>18.50</i>  | -5.23<br>-20.83 | -15.87<br>-6.65         | -10.99<br><i>-18.17</i>   | -5.36<br>-20.74 |
| cc-pVTZ-PP        | 252                             | -18.12<br>-6.41 | -11.85<br>- <i>19.36</i> | -5.37<br>-21.22 | -16.75<br>-6.77 | -11.26<br>- <i>19.19</i>  | -5.38<br>-21.21 | -15.65<br><i>- 5.81</i> | -10.75<br>- <i>17.85</i>  | -5.27<br>-20.60 |
| Def2-TZVP         | 160                             | -17.11<br>-5.37 | -11.27<br>- <i>18.32</i> | -5.11<br>-20.79 | -15.77<br>-5.76 | -10.69<br>-18.14          | -5.14<br>-20.75 | -15.33<br>-5.60         | -10.55<br>- <i>17.</i> 48 | -5.20<br>-20.44 |
| Def2-TZVPP        | 224                             | -17.05<br>-5.13 | -11.19<br><i>-18.31</i>  | -5.05<br>-20.82 | -15.74<br>-5.60 | -10.65<br>- <i>18.18</i>  | -5.11<br>-20.81 | -15.23<br>-5.28         | -10.47<br>- <i>17.43</i>  | -5.15<br>-20.47 |
| Def2-QZVP         | 288                             | -17.59<br>-5.67 | -11.56<br>- <i>18.95</i> | -5.19<br>-21.18 | -16.28<br>-6.04 | -11.00<br>- <i>1</i> 8.79 | -5.22<br>-21.19 | -15.25<br>-5.38         | -10.52<br>-17.55          | -5.08<br>-20.44 |
| Def2-QZVPP        | 352                             | -17.73<br>-6.19 | -11.61<br>- <i>19.27</i> | -5.19<br>-21.22 | -16.44<br>-6.56 | -11.05<br>- <i>19.10</i>  | -5.22<br>-21.25 | -15.17<br>-5.69         | -10.53<br>- <i>17.85</i>  | -5.12<br>-20.58 |

| Li <sub>3</sub> <sup>+</sup> | BP86                |            |                     |            | <b>B3LYP</b>        |            |                     |            | M06                 |            |                     |            |
|------------------------------|---------------------|------------|---------------------|------------|---------------------|------------|---------------------|------------|---------------------|------------|---------------------|------------|
|                              | Δ NICS ((           | ))         | Δ NICS (1           | )          | Δ NICS (            | ))         | Δ NICS (1           | l)         | Δ NICS (            | ))         | Δ NICS (1           | )          |
| Basis sets                   | NICS <sub>iso</sub> | $NICS_{z}$ |
| Lanl2DZ                      | 0.02                | -0.08      | 0.02                | -0.03      | 0.02                | -0.08      | 0.01                | -0.03      | 0                   | 0.01       | 0                   | 0.01       |
| DZVP(DFT orbital)            | 0.13                | -0.03      | 0.05                | 0.01       | 0.12                | -0.03      | 0.04                | 0          | 0.03                | 0          | 0                   | 0          |
| Def2-TZVP                    | 0.01                | -0.12      | -0.01               | -0.05      | 0.01                | -0.14      | -0.01               | -0.06      | 0.01                | -0.02      | 0                   | -0.01      |
| Def2-TZVPP                   | 0.02                | -0.05      | -0.01               | -0.02      | 0.01                | -0.05      | -0.01               | -0.03      | -0.05               | 0.06       | 0.01                | 0.03       |
| Def2-QZVP                    | 0                   | 0          | 0                   | 0          | 0                   | 0          | 0                   | 0          | 0                   | 0          | 0                   | 0          |
| Def2-QZVPP                   | 0                   | 0          | 0                   | 0          | 0                   | 0          | 0                   | 0          | 0                   | 0          | 0                   | 0          |
| 6-311G(d)                    | 0                   | -0.02      | 0                   | -0.01      | 0.01                | -0.02      | -0.01               | -0.01      | -0.04               | 0.13       | 0                   | 0.08       |
| 6-311+G(d)                   | 0.01                | -0.02      | 0                   | 0.29       | 0.01                | -0.02      | -0.01               | 0          | -0.04               | 0.15       | 0.01                | 1.5        |

## Table S-14

|                              | BP86<br>A NICS (0) A NICS (1) |            |                     |            | <b>B3LYP</b> |            |                     |            | M06                 |            |                     |            |
|------------------------------|-------------------------------|------------|---------------------|------------|--------------|------------|---------------------|------------|---------------------|------------|---------------------|------------|
| Cu <sub>3</sub> <sup>+</sup> | Δ NICS (0                     | ))         | Δ NICS (1           | l)         | Δ NICS (     | 0)         | Δ NICS (1           | 1)         | Δ NICS (            | 0)         | Δ NICS (1           | l)         |
| Basis sets                   | NICS <sub>iso</sub>           | $NICS_{z}$ | NICS <sub>iso</sub> | $NICS_{z}$ | NICS iso     | $NICS_{z}$ | NICS <sub>iso</sub> | $NICS_{z}$ | NICS <sub>iso</sub> | $NICS_{z}$ | NICS <sub>iso</sub> | $NICS_{z}$ |
| Aug-cc-pVDZ-PP               | -0.7                          | -0.28      | -0.13               | -0.36      | -0.79        | -0.16      | -0.15               | -0.46      | -0.56               | 0.02       | -0.08               | -0.32      |
| Aug-cc-pVTZ-PP               | -1.35                         | -0.91      | -0.34               | -0.75      | -1.34        | -0.74      | -0.36               | -0.83      | 0.87                | 0.42       | 0.22                | 0.54       |
| Lan12DZ                      | 0.513                         | 0.12       | 0.12                | 0.32       | 0.06         | 0.01       | 0.02                | 0.04       | -0.14               | -0.02      | -0.03               | -0.1       |
| Lanl2TZ                      | 0.24                          | 0.1        | 0.06                | 0.14       | -0.31        | -0.1       | -0.09               | -0.2       | -0.19               | -0.05      | -0.06               | -0.12      |
| Lanl2TZ(f)                   | 0.23                          | 0.1        | 0.06                | 0.14       | -0.3         | -0.09      | -0.08               | -0.19      | -0.21               | -0.04      | -0.06               | -0.13      |
| DZVP(DFT orbital)            | 1.06                          | 0.13       | 0.31                | 0.72       | 0.69         | -0.01      | 0.23                | 0.53       | 0.35                | -0.04      | 0.11                | 0.25       |
| cc-pVDZ-PP                   | -1.55                         | -0.92      | -0.4                | -0.88      | -1.61        | -0.79      | -0.44               | -1.02      | -1.18               | -0.44      | -0.31               | -0.75      |
| cc-pVTZ-PP                   | -0.78                         | -0.5       | -0.21               | -0.44      | -0.92        | -0.48      | -0.26               | -0.58      | -0.57               | -0.24      | -0.15               | -0.36      |
| Def2-TZVP                    | 0.6                           | 0.25       | 0.26                | 0.38       | 0.37         | 0.07       | 0.11                | 0.25       | 0.28                | 0.03       | 0.08                | 0.19       |
| Def2-TZVPP                   | 0.49                          | 0.19       | 0.13                | 0.31       | 0.32         | 0.06       | 0.09                | 0.22       | 0.24                | 0.02       | 0.07                | 0.18       |
| Def2-QZVP                    | 0.19                          | 0.07       | 0.05                | 0.11       | 0.09         | 0.02       | 0.03                | 0.06       | 0.07                | -0.01      | 0.02                | 0.05       |
| Def2-QZVPP                   | 0.3                           | -0.05      | -0.26               | 0.13       | 0.1          | -0.21      | -0.2                | 0.1        | 0.05                | 0          | 0.01                | 0.03       |
| 6-311G(d)                    | -1.21                         | 0.94       | -0.04               | -0.48      | -1.81        | -4.66      | -0.15               | -0.93      | -1.83               | 1.02       | -0.2                | -1.02      |
| 6-311+G(d)                   | 0.23                          | 0.09       | 0.06                | 0.13       | 0.13         | 0.02       | 0.03                | 0.08       | 0.12                | 0.01       | 0.03                | 0.08       |
| Aug-cc-pVDZ                  | 0.74                          | 0.33       | 0.2                 | 0.45       | 0.48         | 0.13       | 0.14                | 0.33       | 0.35                | 0.06       | 0.1                 | 0.23       |
| Aug-cc-pVTZ                  | -0.74                         | -0.27      | -0.17               | -0.43      | 0.69         | 0.11       | 0.17                | 0.45       | 0                   | 0          | 0.01                | 0.01       |
| Aug-cc-pVQZ                  | 0                             | 0          | 0                   | 0          | 0            | 0          | 0                   | 0          | 0                   | 0          | 0                   | 0          |

|                | BP86                | BP86   Δ NICS (0) Δ NICS (1) |                     |            |                     |            |                     |            | M06                 |            |           |            |
|----------------|---------------------|------------------------------|---------------------|------------|---------------------|------------|---------------------|------------|---------------------|------------|-----------|------------|
| $Ag_3^+$       | Δ NICS (            | ))                           | Δ NICS (1           | l)         | Δ NICS (            | ))         | Δ NICS (1           | 1)         | Δ NICS (0           | ))         | Δ NICS (1 | )          |
| Basis sets     | NICS <sub>iso</sub> | $NICS_{z}$                   | NICS <sub>iso</sub> | $NICS_{z}$ | NICS <sub>iso</sub> | $NICS_{z}$ | NICS <sub>iso</sub> | $NICS_{z}$ | NICS <sub>iso</sub> | $NICS_{z}$ | NICS iso  | $NICS_{z}$ |
| Aug-cc-pVDZ-PP | 0.08                | -0.01                        | 0.03                | 0.06       | 0.06                | -0.02      | 0.02                | 0.05       | -0.04               | 0.02       | -0.02     | -0.03      |
| Aug-cc-pVTZ-PP | -0.12               | 0.01                         | -0.04               | -0.07      | -0.09               | 0.02       | -0.03               | -0.06      | -0.79               | 0.03       | -0.51     | -0.05      |
| Lanl2DZ        | 1.18                | -0.09                        | 0.37                | 0.87       | 0.89                | -0.2       | 0.29                | 0.68       | 0.5                 | -0.17      | 0.16      | 0.38       |
| Lanl2TZ        | 1.25                | -0.07                        | 0.43                | 0.9        | 0.87                | -0.18      | 0.3                 | 0.64       | 0.62                | -0.21      | 0.21      | 0.45       |
| Lanl2TZ(f)     | 1.18                | -0.09                        | 0.41                | 0.85       | 0.86                | -0.2       | 0.29                | 0.63       | 0.6                 | -0.22      | 0.21      | 0.43       |
| DZVP(DFT       |                     |                              |                     |            |                     |            |                     |            |                     |            |           |            |
| orbital)       | 2.94                | -1.18                        | 1.04                | 2.24       | 2.49                | -1.43      | 0.89                | 1.94       | 1.81                | -1.21      | 0.67      | 1.39       |
| cc-pVDZ-PP     | 0.51                | 0.02                         | 0.17                | 0.35       | 0.34                | -0.05      | 0.1                 | 0.24       | 0.14                | -0.04      | 0.05      | 0.1        |
| cc-pVTZ-PP     | 0.22                | -0.01                        | 0.06                | 0.15       | 0.15                | -0.03      | 0.05                | 0.11       | 0.12                | -0.04      | 0.03      | 0.09       |
| Def2-TZVP      | 0.73                | -0.03                        | 0.25                | 0.51       | 0.52                | -0.1       | 0.19                | 0.36       | 0.27                | -0.1       | 0.09      | 0.19       |
| Def2-TZVPP     | 0.47                | -0.04                        | 0.15                | 0.33       | 0.33                | -0.08      | 0.11                | 0.23       | 0.17                | -0.07      | 0.06      | 0.13       |
| Def2-QZVP      | 0.04                | 0                            | 0.01                | 0.03       | 0.03                | -0.01      | 0.01                | 0.03       | 0                   | 0          | 0         | 0          |
| Def2-QZVPP     | 0                   | 0                            | 0                   | 0          | 0                   | 0          | 0                   | 0          | 0                   | 0          | 0         | 0          |

|                              | BP86                |            |                     |            | <b>B3LYP</b> |            |                     |            | M06                 |            |                     |            |
|------------------------------|---------------------|------------|---------------------|------------|--------------|------------|---------------------|------------|---------------------|------------|---------------------|------------|
| Au <sub>3</sub> <sup>+</sup> | Δ NICS ((           | ))         | Δ NICS (1           | l)         | Δ NICS (     | ))         | Δ NICS (1           | )          | Δ NICS (            | ))         | Δ NICS (1           | .)         |
| Basis sets                   | NICS <sub>iso</sub> | $NICS_{z}$ | NICS <sub>iso</sub> | $NICS_{z}$ | NICS iso     | $NICS_{z}$ | NICS <sub>iso</sub> | $NICS_{z}$ | NICS <sub>iso</sub> | $NICS_{z}$ | NICS <sub>iso</sub> | $NICS_{z}$ |
| Aug-cc-pVDZ-PP               | 0.17                | 0.02       | 0.04                | 0.1        | 0.15         | 0          | 0.04                | 0.09       | 0.15                | -0.01      | 0.03                | 0.09       |
| Aug-cc-pVTZ-PP               | -                   | -          | -                   | -          | -0.02        | 0          | 0                   | -0.01      | -0.05               | 0          | -0.01               | -0.02      |
| Lan12DZ                      | 2.06                | 1.14       | 0.6                 | 1.32       | 1.76         | 0.86       | 0.52                | 1.14       | 1.23                | 0.56       | 0.38                | 0.8        |
| Lan12TZ                      | 1.24                | 0.35       | 0.33                | 0.74       | 1.01         | 0.29       | 0.28                | 0.62       | 0.83                | 0.21       | 0.24                | 0.54       |
| Lanl2TZ(f)                   | 0.67                | 0.12       | 0.17                | 0.4        | 0.5          | 0.09       | 0.13                | 0.31       | 0.46                | 0.07       | 0.13                | 0.28       |
| cc-pVDZ-PP                   | 0.74                | 0.18       | 0.22                | 0.47       | 0.61         | 0.1        | 0.17                | 0.4        | 0.47                | 0.04       | 0.14                | 0.32       |
| cc-pVTZ-PP                   | 0.09                | -0.01      | 0.02                | 0.05       | 0.11         | -0.01      | 0.02                | 0.06       | 0.09                | -0.03      | 0.02                | 0.06       |
| Def2-TZVP                    | 0.5                 | 0.01       | 0.12                | 0.33       | 0.43         | -0.04      | 0.1                 | 0.28       | 0.3                 | -0.06      | 0.08                | 0.2        |
| Def2-TZVPP                   | 0.15                | 0          | 0.04                | 0.1        | 0.12         | -0.02      | 0.03                | 0.08       | 0.09                | -0.02      | 0.02                | 0.06       |
| Def2-QZVP                    | 0.11                | 0          | 0.03                | 0.06       | 0.07         | -0.01      | 0.02                | 0.05       | 0.09                | -0.02      | 0.02                | 0.05       |
| Def2-QZVPP                   | 0                   | 0          | 0                   | 0          | 0            | 0          | 0                   | 0          | 0                   | 0          | 0                   | 0          |

## Table S-17

|             | BP86                | BP86       |                     |            |                     |            |                     |            | M06                 |            |                   |            |
|-------------|---------------------|------------|---------------------|------------|---------------------|------------|---------------------|------------|---------------------|------------|-------------------|------------|
| Sc3         | Δ NICS (            | 0)         | Δ NICS (            | 1)         | Δ NICS (            | ))         | Δ NICS (            | 1)         | Δ NICS (0)          |            | $\Delta$ NICS (1) |            |
| Basis sets  | NICS <sub>iso</sub> | $NICS_{z}$ | NICS iso          | $NICS_{z}$ |
| Lan12DZ     | 0.01                | -0.46      | -0.11               | -0.45      | -0.17               | -0.34      | -0.21               | -0.3       | 1.51                | 1.64       | 2.19              | 1.11       |
| Lan12TZ     | 0                   | -2.22      | -0.46               | -2.12      | -0.71               | -1.84      | -0.92               | -1.68      | -1.07               | -1.05      | -1.41             | -0.74      |
| Lanl2TZ(f)  | 0.01                | -2.04      | -0.44               | -2.02      | -0.63               | -1.6       | -0.85               | -1.53      | -0.98               | -0.8       | -1.14             | -0.58      |
| Def2-TZVP   | 0.09                | -0.16      | -0.02               | -0.18      | 0                   | 0.05       | 0.04                | 0.06       | -0.01               | 0.16       | 0.3               | 0.12       |
| Def2-TZVPP  | 0.06                | -0.15      | -0.02               | -0.18      | -0.01               | -0.02      | -0.02               | -0.02      | -0.02               | 0.08       | 0.13              | 0.07       |
| Def2-QZVP   | 0.03                | -0.08      | -0.02               | -0.1       | -0.01               | -22.96     | -0.02               | -0.02      | -0.02               | 0.25       | 0.31              | 0.18       |
| Def2-QZVPP  | 0.04                | -0.11      | -0.02               | -0.13      | -0.01               | -22.97     | -0.02               | -0.02      | -0.01               | 0.2        | 0.27              | 0.16       |
| 6-311G(d)   | 4.96                | 2.21       | 2.73                | 2.34       | 12.21               | 22.62      | 6.77                | 2.11       | -569.51             | 1.78       | -137.27           | 1.17       |
| 6-311+G(d)  | 0.12                | -0.37      | -0.09               | -0.44      | -0.07               | -0.2       | -0.19               | -0.24      | 0.01                | -0.24      | -10.47            | -0.18      |
| Aug-cc-pVDZ | 0.07                | -0.25      | -0.07               | -0.29      | -0.06               | -0.17      | -0.15               | -0.2       | -0.01               | -0.06      | -10.02            | -0.05      |
| Aug-cc-pVTZ | 0.01                | -0.05      | -0.01               | -0.06      | 0                   | 0          | 0                   | 0          | 0                   | 0          | -9.51             | 0          |
| Aug-cc-pVQZ | 0                   | 0          | 0                   | 0          | 0                   | 0          | 0                   | 0          | 0                   | 0          | 0                 | 0          |

#### Table S-18

|                             | BP86                | BP86       |                     |            |          |            |                     |            | M06                 |            |           |            |
|-----------------------------|---------------------|------------|---------------------|------------|----------|------------|---------------------|------------|---------------------|------------|-----------|------------|
| Y <sub>3</sub> <sup>-</sup> | Δ NICS ((           | ))         | Δ NICS (1           | l)         | Δ NICS ( | ))         | Δ NICS (1           | l)         | Δ NICS (            | ))         | Δ NICS (1 | .)         |
| Basis sets                  | NICS <sub>iso</sub> | $NICS_{z}$ | NICS <sub>iso</sub> | $NICS_{z}$ | NICS iso | $NICS_{z}$ | NICS <sub>iso</sub> | $NICS_{z}$ | NICS <sub>iso</sub> | $NICS_{z}$ | -0.13     | $NICS_{z}$ |
| Lanl2DZ                     | -0.03               | -0.14      | -0.06               | -0.13      | -0.03    | -0.09      | -0.05               | -0.07      | -0.04               | -0.12      | -0.42     | -0.07      |
| Lanl2TZ                     | -0.08               | -0.49      | -0.19               | -0.43      | -0.12    | -0.41      | -0.22               | -0.32      | -0.1                | -0.44      | -0.28     | -0.26      |
| Lanl2TZ(f)                  | -0.05               | -0.31      | -0.12               | -0.29      | -0.06    | -0.26      | -0.16               | -0.22      | -0.07               | -0.27      | -0.65     | -0.15      |
| DZVP(DFT orbital)           | -0.01               | -0.11      | -0.04               | -0.09      | -0.03    | -0.25      | -0.13               | -0.21      | 0.11                | -0.89      | 0         | -0.51      |
| Def2-TZVP                   | 0.02                | -0.08      | -0.02               | -0.08      | 0.01     | -0.05      | -0.02               | -0.04      | 0                   | -0.01      | -0.01     | 0          |
| Def2-TZVPP                  | 0.01                | -0.08      | -0.02               | -0.07      | 0.01     | -0.04      | -0.03               | -0.04      | 0                   | -0.01      | 0         | 0          |
| Def2-QZVP                   | 0                   | -0.02      | -0.01               | -0.02      | 0        | -0.01      | -0.01               | -0.01      | 0                   | 0          | 0         | 0          |
| Def2-QZVPP                  | 0                   | 0          | 0                   | 0          | 0        | 0          | 0                   | 0          | 0                   | 0          | -0.13     | 0          |

|                              | BP86                |            |                     |            | B3LYP               |            |                     |            | M06                 |            |                     |            |
|------------------------------|---------------------|------------|---------------------|------------|---------------------|------------|---------------------|------------|---------------------|------------|---------------------|------------|
| La <sub>3</sub> <sup>-</sup> | Δ NICS (0           | )          | Δ NICS (1           | )          | Δ NICS (            | ))         | $\Delta$ NICS (1)   |            | Δ NICS (0)          |            | Δ NICS (1           | )          |
| Basis sets                   | NICS <sub>iso</sub> | $NICS_{z}$ |
| Lan12DZ                      | -0.9                | -3.1       | -1.36               | -3.26      | -1.76               | -3.07      | -0.89               | -3.13      | -2.3                | 13.3       | 4.13                | -3.32      |
| Lanl2TZ                      | -0.89               | -2.76      | -1.36               | -3.28      | -1.16               | -2.77      | -1.6                | -3.18      | -2.28               | 20.08      | 5.96                | -3.03      |
| Lanl2TZ(f)                   | -0.32               | -1.09      | -0.5                | -1.27      | -0.53               | -1.42      | 2                   | -1.62      | -0.91               | 18.08      | 10.7                | -1.39      |
| Def2-TZVP                    | -0.12               | -0.57      | -0.25               | -0.7       | -0.1                | -0.38      | 0.99                | -0.45      | -0.14               | -0.27      | 6.89                | -0.29      |
| Def2-TZVPP                   | -3.89               | -2.26      | -3.72               | -4.77      | 3.81                | 1.86       | 3.55                | 4.29       | -0.05               | -0.1       | 8.48                | -0.1       |
| Def2-QZVP                    | -0.01               | -0.02      | -0.019              | -0.02      | -0.01               | -0.03      | 1.45                | -0.03      | 0.01                | 0          | 9.17                | 0.01       |
| Def2-QZVPP                   | 0                   | 0          | 0                   | 0          | 0                   | 0          | 0                   | 0          | 0                   | 0          | 0                   | 0          |

|                   | BP86                | BP86       |                     |            |                     |            |                     |            | M06                 |            |                     |            |
|-------------------|---------------------|------------|---------------------|------------|---------------------|------------|---------------------|------------|---------------------|------------|---------------------|------------|
| Al4 <sup>2-</sup> | Δ NICS (0           | ))         | Δ NICS (1           | l)         | Δ NICS (            | ))         | Δ NICS (1           | l)         | Δ NICS (            | ))         | Δ NICS (1           | .)         |
| Basis sets        | NICS <sub>iso</sub> | $NICS_{z}$ |
| Lanl2DZ           | 0.13                | 1.73       | 0.04                | 1.06       | 0.14                | 1.66       | 0.01                | 1.01       | -0.91               | 2.7        | -0.44               | 1.67       |
| DZVP(DFT orbital) | 0.11                | 0.38       | 0.06                | 0.26       | 0.11                | 0.38       | 0.05                | 0.26       | 0.05                | 0.32       | 0.04                | 0.22       |
| Def2-TZVP         | -0.01               | -0.04      | -0.01               | -0.03      | -0.04               | -0.11      | -0.02               | -0.07      | -0.05               | -0.23      | -0.03               | -0.16      |
| Def2-TZVPP        | -0.02               | -0.05      | -0.01               | -0.03      | -0.04               | -0.11      | -0.02               | -0.07      | -0.06               | -0.25      | -0.04               | -0.17      |
| Def2-QZVP         | -0.01               | 0          | 0                   | 0          | 0                   | 0          | 0                   | 0          | 0                   | 0          | 0                   | 0          |
| Def2-QZVPP        | 0                   | 0          | 0                   | 0          | 0                   | 0          | 0                   | 0          | 0                   | 0          | 0                   | 0          |
| 6-311G(d)         | 0.07                | 0.26       | 0.04                | 0.17       | 0.07                | 0.26       | 0.04                | 0.17       | 0.03                | 0.19       | 0.01                | 0.12       |
| 6-311+G(d)        | 0.08                | 0.26       | 0.04                | 0.17       | 0.07                | 0.25       | 0.03                | 0.17       | 0.08                | 0.32       | 0.04                | 0.22       |

#### Table S-21

|                   | BP86                |            |                     | B3LYP      |          |            | M06                 |            |                     |            |                     |            |
|-------------------|---------------------|------------|---------------------|------------|----------|------------|---------------------|------------|---------------------|------------|---------------------|------------|
| Ga4 <sup>2</sup>  | Δ NICS ((           | ))         | Δ NICS (1           | )          | Δ NICS ( | ))         | Δ NICS (1           | l)         | Δ NICS (            | 0)         | Δ NICS (1           | l)         |
| Basis sets        | NICS <sub>iso</sub> | $NICS_{z}$ | NICS <sub>iso</sub> | $NICS_{z}$ | NICS iso | $NICS_{z}$ | NICS <sub>iso</sub> | $NICS_{z}$ | NICS <sub>iso</sub> | $NICS_{z}$ | NICS <sub>iso</sub> | $NICS_{z}$ |
| Aug-cc-pVDZ-PP    | 0.46                | 0.92       | 0.3                 | 0.94       | 0.41     | 0.85       | 0.26                | 0.89       | 0.43                | 0.42       | 0.24                | 0.49       |
| Aug-cc-pVTZ-PP    | 0.28                | 0.63       | 0.15                | 0.52       | 0.26     | 0.61       | 0.14                | 0.51       | 0.63                | 0.65       | 0.33                | 0.54       |
| Lan12DZ           | 0.22                | 2.27       | 0.16                | 1.52       | 0.22     | 1.89       | 0.13                | 1.27       | -0.37               | 1.88       | -0.14               | 1.26       |
| DZVP(DFT orbital) | 0.31                | 0.43       | 0.19                | 0.55       | 0.26     | 0.36       | 0.15                | 0.46       | 0.21                | 0.28       | 0.13                | 0.34       |
| cc-pVDZ-PP        | 0.31                | 0.52       | 0.2                 | 0.55       | 0.23     | 0.35       | 0.13                | 0.37       | -0.01               | -0.02      | 0                   | -0.01      |
| cc-pVTZ-PP        | 0.13                | 0.23       | 0.08                | 0.21       | 0.08     | 0.13       | 0.05                | 0.13       | 0.07                | 0.1        | 0.04                | 0.09       |
| Def2-TZVP         | -0.08               | -0.11      | -0.05               | -0.12      | -0.12    | -0.16      | -0.07               | -0.18      | -0.4                | -0.4       | -0.21               | -0.49      |
| Def2-TZVPP        | -0.08               | -0.12      | -0.05               | -0.12      | -0.12    | -0.16      | -0.07               | -0.18      | -0.4                | -0.4       | -0.21               | -0.49      |
| Def2-QZVP         | 0.01                | 0          | 0                   | 0          | 0        | 0          | 0                   | 0          | 0                   | 0.01       | 0                   | 0          |
| Def2-QZVPP        | 0                   | 0          | 0                   | 0          | 0        | 0          | 0                   | 0          | 0                   | 0          | 0                   | 0          |
| 6-311G(d)         | 0.15                | 0.24       | 0.09                | 0.28       | 0.13     | 0.22       | 0.08                | 0.26       | 0.19                | 0.27       | 0.11                | 0.32       |
| 6-311+G(d)        | 1.2                 | 4.09       | 0.94                | 3.17       | 0.02     | 0.61       | 0.07                | 0.64       | 0.37                | 0.34       | 0.2                 | 0.43       |

|                               | BP86                |            |                     |             | B3LYP    |             |                     |            | M06                 |            |                     |            |
|-------------------------------|---------------------|------------|---------------------|-------------|----------|-------------|---------------------|------------|---------------------|------------|---------------------|------------|
| Cu <sub>4</sub> <sup>2-</sup> | Δ NICS (            | ))         | Δ NICS (1           | 1)          | Δ NICS ( | 0)          | Δ NICS (            | 1)         | Δ NICS (            | 0)         | Δ NICS (            | 1)         |
| Basis sets                    | NICS <sub>iso</sub> | $NICS_{z}$ | NICS <sub>iso</sub> | $NICS_{zz}$ | NICS iso | $NICS_{zz}$ | NICS <sub>iso</sub> | $NICS_{z}$ | NICS <sub>iso</sub> | $NICS_{z}$ | NICS <sub>iso</sub> | $NICS_{z}$ |
| Aug-cc-pVDZ-PP                | -0.81               | -0.76      | -0.21               | -0.56       | -0.71    | -0.51       | -0.14               | -0.65      | -0.31               | -0.09      | -0.03               | -0.23      |
| Aug-cc-pVTZ-PP                | -1.25               | -1.28      | -0.45               | -1.02       | -1.02    | -1          | -0.34               | -1.1       | -                   | -          | -                   | -          |
| Lanl2DZ                       | 0.1                 | 0.08       | 0.02                | 0.08        | -0.15    | -0.1        | -0.01               | -0.19      | -0.22               | -0.11      | -0.03               | -0.24      |
| Lanl2TZ                       | -0.58               | -0.49      | -0.18               | -0.5        | -0.67    | -0.5        | -0.16               | -0.77      | -0.56               | -0.35      | -0.13               | -0.58      |
| Lanl2TZ(f)                    | -0.59               | -0.48      | -0.18               | -0.5        | -0.67    | -0.5        | -0.16               | -0.77      | -0.57               | 6.75       | -0.13               | -0.58      |
| DZVP(DFT orbital)             | 1.62                | 1.4        | 0.85                | 2.05        | 1.12     | 0.84        | 0.62                | 1.65       | 0.73                | 0.52       | 0.41                | 1.15       |
| cc-pVDZ-PP                    | -                   | -          | -                   | -           | -        | -           | -                   | -          | -0.61               | -0.67      | -0.16               | -0.75      |
| cc-pVTZ-PP                    | -0.74               | -0.81      | -0.29               | -0.68       | -0.58    | -0.55       | -0.21               | -0.68      | -0.26               | -0.24      | -0.08               | -0.33      |
| Def2-TZVP                     | 0.59                | 0.49       | 0.23                | 0.53        | 0.36     | 0.21        | 0.14                | 0.39       | 0.43                | 0.23       | 0.17                | 0.51       |
| Def2-TZVPP                    | 0.23                | 0.21       | 0.08                | 0.22        | 0.08     | 0.05        | 0.03                | 0.09       | 0.16                | 0.07       | 0.04                | 0.2        |
| Def2-QZVP                     | 0.03                | 0.02       | 0.01                | 0.03        | 0.01     | 0.01        | 0.01                | 0.03       | 0.01                | 0          | -0.01               | 0.02       |
| Def2-QZVPP                    | 0                   | 0          | 0                   | 0           | 0        | 0           | 0                   | 0          | 0                   | 0          | 0                   | 0          |
| 6-311G(d)                     | -7.33               | 0.53       | -3.12               | -2.2        | -3.59    | 1.33        | -1.41               | -2.02      | -3.98               | 1.26       | -1.53               | -2.09      |
| 6-311+G(d)                    | -0.12               | -0.11      | -0.05               | -0.14       | -0.09    | -0.05       | -0.03               | -0.15      | 0.01                | 7.94       | 0                   | 0.02       |
| Aug-cc-pVDZ                   | 0.42                | 0.43       | 0.14                | 0.43        | 0.25     | 0.21        | 0.07                | 0.36       | 0.27                | 0.24       | 0.05                | 0.49       |
| Aug-cc-pVTZ                   | -0.23               | -0.18      | -0.07               | -0.24       | -0.16    | -0.1        | -0.04               | -0.25      | -0.02               | 0          | 0                   | -0.03      |

|                    | BP86                |            |                     | B3LYP      |          |            | M06                 |            |                     |            |                     |            |
|--------------------|---------------------|------------|---------------------|------------|----------|------------|---------------------|------------|---------------------|------------|---------------------|------------|
| Ag4 <sup>2-</sup>  | Δ NICS ((           | ))         | Δ NICS (1           | )          | Δ NICS ( | ))         | Δ NICS (1           | 1)         | Δ NICS (            | 0)         | Δ NICS (1           | )          |
| Basis sets         | NICS <sub>iso</sub> | $NICS_{z}$ | NICS <sub>iso</sub> | $NICS_{z}$ | NICS iso | $NICS_{z}$ | NICS <sub>iso</sub> | $NICS_{z}$ | NICS <sub>iso</sub> | $NICS_{z}$ | NICS <sub>iso</sub> | $NICS_{z}$ |
| Aug-cc-pVDZ-PP     | -0.06               | 0.02       | -0.02               | -0.07      | -0.05    | 0.02       | -0.01               | -0.06      | -0.03               | 0.02       | -0.01               | -0.06      |
| Aug-cc-pVTZ-PP     | -0.15               | 0.05       | -0.05               | -0.18      | -0.11    | 0.07       | -0.04               | -0.15      | -0.02               | 0.03       | 0.01                | -0.05      |
| Lan12DZ            | 0                   | 0          | 0                   | 0          | 0.3      | -0.24      | 0.08                | 0.47       | 0.11                | -0.13      | 0.03                | 0.16       |
| Lanl2TZ            | 0.3                 | -0.02      | 0.13                | 0.39       | 0.19     | -0.08      | 0.07                | 0.3        | 0.13                | -0.08      | 0.04                | 0.16       |
| Lanl2TZ(f)         | 0.26                | -0.03      | 0.1                 | 0.33       | 0.16     | -0.07      | 0.06                | 0.26       | -1.14               | -0.07      | 0.03                | 0.14       |
| DZVP(DFT orbit al) | 1.1                 | -0.82      | 0.51                | 1.83       | 0.93     | -0.98      | 0.44                | 1.77       | 0.41                | -0.71      | 0.19                | 1.05       |
| cc-pVDZ-PP         | 0.16                | 0.01       | 0.07                | 0.22       | 0.11     | -0.02      | 0.05                | 0.18       | 0.06                | -0.01      | 0.03                | 0.12       |
| cc-pVTZ-PP         | 0.06                | -0.01      | 0.03                | 0.08       | 0.05     | -0.02      | 0.02                | 0.06       | 0.03                | -0.02      | 0.01                | 0.05       |
| Def2-TZVP          | 0.31                | 0.02       | 0.13                | 0.44       | 0.24     | -0.06      | 0.08                | 0.38       | 0.14                | -0.03      | 0.06                | 0.25       |
| Def2-TZVPP         | 0.2                 | -0.01      | 0.08                | 0.27       | 0.16     | -0.05      | 0.06                | 0.26       | 0.06                | -0.03      | 0.02                | 0.12       |
| Def2-QZVP          | 0.01                | 0          | 0.01                | 0.01       | 0.01     | -0.01      | 0                   | 0.01       | -0.01               | 0.01       | 0                   | 0          |
| Def2-QZVPP         | 0                   | 0          | 0                   | 0          | 0        | 0          | 0                   | 0          | 0                   | 0          | 0                   | 0          |

|                               | BP86                |            | B31                 |            |          | B3LYP      |                     |            | M06                 |            |                     |            |
|-------------------------------|---------------------|------------|---------------------|------------|----------|------------|---------------------|------------|---------------------|------------|---------------------|------------|
| Au <sub>4</sub> <sup>2-</sup> | Δ NICS ((           | ))         | Δ NICS (1           | l)         | Δ NICS ( | ))         | Δ NICS (1           | l)         | Δ NICS (            | 0)         | Δ NICS (1           | l)         |
| Basis sets                    | NICS <sub>iso</sub> | $NICS_{z}$ | NICS <sub>iso</sub> | $NICS_{z}$ | NICS iso | $NICS_{z}$ | NICS <sub>iso</sub> | $NICS_{z}$ | NICS <sub>iso</sub> | $NICS_{z}$ | NICS <sub>iso</sub> | $NICS_{z}$ |
| Aug-cc-pVDZ-PP                | -0.01               | 0          | 0                   | -0.01      | 0        | 0          | 0                   | 0.01       | -0.03               | 0.02       | -0.01               | -0.04      |
| Aug-cc-pVTZ-PP                | -0.13               | -0.04      | -0.06               | -0.15      | -0.1     | -0.03      | -0.04               | -0.11      | -0.05               | 0.04       | -0.02               | -0.07      |
| Lanl2DZ                       | 1.37                | 0.46       | 0.65                | 1.32       | 1.21     | 0.3        | 0.59                | 1.23       | 0.46                | 0          | 0.23                | 0.45       |
| Lanl2TZ                       | -6.06               | 0.17       | 0.25                | 0.5        | 0.47     | 0.11       | 0.23                | 0.47       | 0.21                | 0          | 0.1                 | 0.2        |
| Lanl2TZ(f)                    | 0.17                | 0.04       | 0.08                | 0.17       | 0.16     | 0.02       | 0.08                | 0.16       | 0.02                | 0          | 0.01                | 0.02       |
| cc-pVDZ-PP                    | 0.33                | 0.09       | 0.16                | 0.32       | 0.28     | 0.04       | 0.13                | 0.29       | 0.11                | -0.04      | 0.05                | 0.11       |
| cc-pVTZ-PP                    | 0                   | 0          | 0                   | 0.01       | 0.03     | -0.01      | 0.01                | 0.03       | 0.01                | 0          | 0                   | 0.01       |
| Def2-TZVP                     | 0.29                | -0.03      | 0.12                | 0.29       | 0.26     | -0.06      | 0.11                | 0.28       | 0.17                | -0.09      | 0.07                | 0.17       |
| Def2-TZVPP                    | 0.12                | -0.02      | 0.05                | 0.13       | 0.13     | -0.05      | 0.05                | 0.14       | 0.07                | -0.04      | 0.03                | 0.06       |
| Def2-QZVP                     | 0.01                | 0          | 0.01                | 0.01       | 0.02     | -0.01      | 0.01                | 0.03       | 0.03                | -0.02      | 0.01                | 0.02       |
| Def2-QZVPP                    | 0                   | 0          | 0                   | 0          | 0        | 0          | 0                   | 0          | 0                   | 0          | 0                   | 0          |

| Li <sub>3</sub> <sup>+</sup> | BP86  | B3LYP  | M06    |
|------------------------------|-------|--------|--------|
| Lan12DZ                      | 0.03  | 0.027  | -0.007 |
| DZVP(DFT orbital)            | 0.063 | 0.057  | 0.003  |
| Def2-TZVP                    | 0.044 | 0.044  | 0.007  |
| Def2-TZVPP                   | 0.022 | 0.018  | -0.043 |
| Def2-QZVP                    | 0     | -0.001 | 0      |
| Def2-QZVPP                   | 0     | 0      | 0      |
| 6-311G(d)                    | 0.008 | 0.005  | -0.055 |
| 6-311+G(d)                   | 0.008 | 0.005  | -0.059 |

#### Table S-26

| Cu <sub>3</sub> <sup>+</sup> | BP86   | B3LYP  | M06    |
|------------------------------|--------|--------|--------|
| Aug-cc-pVDZ-PP               | -0.02  | -0.029 | -0.024 |
| Aug-cc-pVTZ-PP               | -0.03  | -0.036 | -0.029 |
| Lan12DZ                      | 0.017  | 0.002  | -0.006 |
| Lanl2TZ                      | 0.007  | -0.01  | -0.006 |
| Lanl2TZ(f)                   | 0.007  | -0.01  | -0.007 |
| DZVP(DFT orbital)            | 0.037  | 0.029  | 0.014  |
| cc-pVDZ-PP                   | -0.035 | -0.044 | -0.035 |
| cc-pVTZ-PP                   | -0.017 | -0.025 | -0.017 |
| Def2-TZVP                    | 0.018  | 0.014  | 0.01   |
| Def2-TZVPP                   | 0.015  | 0.012  | 0.009  |
| Def2-QZVP                    | 0.006  | 0.004  | 0.002  |
| Def2-QZVPP                   | 0.003  | 0.002  | 0.001  |
| 6-311G(d)                    | -0.048 | -0.081 | -0.08  |
| 6-311+G(d)                   | 0.007  | 0.005  | 0.004  |
| Aug-cc-pVDZ                  | 0.021  | 0.017  | 0.012  |
| Aug-cc-pVTZ                  | 0      | 0      | 0      |
| Aug-cc-pVQZ                  | 0      | 0      | 0      |

#### Table S-27

| $Ag_3^+$          | BP86   | B3LYP  | M06    |
|-------------------|--------|--------|--------|
| Aug-cc-pVDZ-PP    | 0.003  | 0.004  | 0      |
| Aug-cc-pVTZ-PP    | -0.005 | -0.003 | -0.004 |
| Lanl2DZ           | 0.049  | 0.043  | 0.026  |
| Lanl2TZ           | 0.049  | 0.04   | 0.03   |
| Lanl2TZ(f)        | 0.047  | 0.04   | 0.03   |
| DZVP(DFT orbital) | 0.14   | 0.138  | 0.106  |
| cc-pVDZ-PP        | 0.018  | 0.015  | 0.008  |
| cc-pVTZ-PP        | 0.008  | 0.008  | 0.008  |
| Def2-TZVP         | 0.028  | 0.024  | 0.014  |
| Def2-TZVPP        | 0.018  | 0.015  | 0.01   |
| Def2-QZVP         | 0.048  | -0.045 | 0.002  |
| Def2-QZVPP        | 0      | 0      | 0      |

| Au <sub>3</sub> <sup>+</sup> | BP86  | B3LYP  | M06    |
|------------------------------|-------|--------|--------|
| Aug-cc-pVDZ-PP               | 0.005 | 0.005  | 0.005  |
| Aug-cc-pVTZ-PP               | -0.01 | -0.001 | -0.002 |
| Lan12DZ                      | 0.046 | 0.042  | 0.032  |
| Lanl2TZ                      | 0.032 | 0.027  | 0.025  |
| Lanl2TZ(f)                   | 0.019 | 0.014  | 0.014  |
| cc-pVDZ-PP                   | 0.02  | 0.018  | 0.015  |
| cc-pVTZ-PP                   | 0.003 | 0.004  | 0.003  |
| Def2-TZVP                    | 0.016 | 0.014  | 0.011  |
| Def2-TZVPP                   | 0.005 | 0.004  | 0.003  |
| Def2-QZVP                    | 0.003 | 0.002  | 0.003  |
| Def2-QZVPP                   | 0     | 0      | 0      |

| Sc <sub>3</sub> | BP86   | B3LYP  | M06    |
|-----------------|--------|--------|--------|
| Lanl2DZ         | 0.007  | 0.006  | -0.016 |
| Lan12TZ         | 0.036  | 0.036  | 0.013  |
| Lanl2TZ(f)      | 0.035  | 0.033  | 0.01   |
| Def2-TZVP       | 0.004  | -0.001 | -0.004 |
| Def2-TZVPP      | 0.004  | 0.001  | -0.002 |
| Def2-QZVP       | 0.002  | 0.001  | -0.004 |
| Def2-QZVPP      | 0.003  | 0.001  | -0.004 |
| 6-311G(d)       | -0.078 | -0.088 | -0.075 |
| 6-311+G(d)      | 0.009  | 0.007  | 0.006  |
| Aug-cc-pVDZ     | 0.006  | 0.006  | 0.002  |
| Aug-cc-pVTZ     | 0.001  | 0      | 0      |
| Aug-cc-pVQZ     | 0      | 0      | 0      |

#### Table S-30

| Y <sub>3</sub>       | BP86  | B3LYP | M06   |
|----------------------|-------|-------|-------|
| Lan <sup>12</sup> DZ | 0.005 | 0.003 | 0.004 |
| Lanl2TZ              | 0.017 | 0.019 | 0.017 |
| Lanl2TZ(f)           | 0.012 | 0.014 | 0.012 |
| DZVP(DFT orbital)    | 0.003 | 0.007 | 0.024 |
| Def2-TZVP            | 0.005 | 0.004 | 0     |
| Def2-TZVPP           | 0.004 | 0.003 | 0     |
| Def2-QZVP            | 0.002 | 0.001 | 0     |
| Def2-QZVPP           | 0     | 0     | 0     |

#### Table S-31

| La <sub>3</sub> | BP86  | B3LYP | M06   |
|-----------------|-------|-------|-------|
| Lanl2DZ         | 0.03  | 0.031 | 0.03  |
| Lan12TZ         | 0.037 | 0.039 | 0.035 |
| Lanl2TZ(f)      | 0.014 | 0.019 | 0.014 |
| Def2-TZVP       | 0.009 | 0.007 | 0.004 |
| Def2-TZVPP      | 0.005 | 0.002 | 0     |
| Def2-QZVP       | 0.001 | 0.001 | 0     |
| Def2-QZVPP      | 0     | 0     | 0     |

| Al4 <sup>2</sup>   | BP86   | B3LYP  | M06    |
|--------------------|--------|--------|--------|
| Lanl2DZ            | 0.082  | 0.081  | 0.109  |
| DZVP(DFT orbit al) | 0.019  | 0.019  | 0.015  |
| Def2-TZVP          | -0.003 | -0.005 | -0.01  |
| Def2-TZVPP         | -0.003 | -0.006 | -0.011 |
| Def2-QZVP          | 0      | 0      | 0      |
| Def2-QZVPP         | 0      | 0      | 0      |
| 6-311G(d)          | 0.012  | 0.012  | 0.008  |
| 6-311+G(d)         | 0.012  | 0.014  | 0.015  |

| Ga4 <sup>2-</sup>    | BP86   | B3LYP  | M06    |
|----------------------|--------|--------|--------|
| Aug-cc-pVDZ-PP       | 0.038  | 0.036  | 0.024  |
| Aug-cc-pVTZ-PP       | 0.019  | 0.02   | 0.02   |
| Lan <sup>12</sup> DZ | 0.105  | 0.09   | 0.07   |
| DZVP(DFT orbital)    | 0.025  | 0.021  | 0.015  |
| cc-pVDZ-PP           | 0.023  | 0.016  | 0      |
| cc-pVTZ-PP           | 0.01   | 0.005  | 0.004  |
| Def2-TZVP            | -0.006 | -0.009 | -0.024 |
| Def2-TZVPP           | -0.006 | -0.009 | -0.024 |
| Def2-QZVP            | 0      | 0      | 0.001  |
| Def2-QZVPP           | 0      | 0      | 0      |
| 6-311G(d)            | 0.013  | 0.012  | 0.016  |
| 6-311+G(d)           | 0.019  | 0.022  | 0.022  |

#### Table S-34

| Cu <sub>4</sub> <sup>2-</sup> | BP86   | B3LYP  | M06    |
|-------------------------------|--------|--------|--------|
| Aug-cc-pVDZ-PP                | -0.03  | -0.044 | -0.023 |
| Aug-cc-pVTZ-PP                | -0.041 | -0.053 | -      |
| Lan12DZ                       | 0.005  | -0.013 | -0.017 |
| Lanl2TZ                       | -0.024 | -0.045 | -0.035 |
| Lanl2TZ(f)                    | -0.024 | -0.045 | -0.035 |
| DZVP(DFT orbital)             | 0.095  | 0.09   | 0.062  |
| cc-pVDZ-PP                    | -      | -      | -0.036 |
| cc-pVTZ-PP                    | -0.024 | -0.031 | -0.016 |
| Def2-TZVP                     | 0.025  | 0.023  | 0.031  |
| Def2-TZVPP                    | 0.011  | 0.006  | 0.013  |
| Def2-QZVP                     | 0.002  | 0.001  | 0.001  |
| Def2-QZVPP                    | 0      | 0      | 0      |
| 6-311G(d)                     | -0.119 | -0.147 | -0.145 |
| 6-311+G(d)                    | -0.007 | -0.01  | 0.002  |
| Aug-cc-pVDZ                   | 0.02   | 0.02   | 0.028  |
| Aug-cc-pVTZ-PP                | -0.013 | -0.016 | -0.004 |

|                   |        | -      | -      |
|-------------------|--------|--------|--------|
| $Ag_4^{2-}$       | BP86   | B3LYP  | M06    |
| Aug-cc-pVDZ-PP    | -0.006 | -0.006 | -0.006 |
| Aug-cc-pVTZ-PP    | -0.015 | -0.016 | -0.005 |
| Lan12DZ           | 0.05   | 0.047  | 0.019  |
| Lanl2TZ           | 0.028  | 0.025  | 0.016  |
| Lanl2TZ(f)        | 0.025  | 0.023  | 0.014  |
| DZVP(DFT orbital) | 0.157  | 0.175  | 0.104  |
| cc-pVDZ-PP        | 0.014  | 0.015  | 0.009  |
| cc-pVTZ-PP        | 0.006  | 0.005  | 0.004  |
| Def2-TZVP         | 0.03   | 0.032  | 0.02   |
| Def2-TZVPP        | 0.02   | 0.022  | 0.01   |
| Def2-QZVP         | 0.001  | 0      | -0.001 |
| Def2-QZVPP        | 0      | 0      | 0      |

| Au4 <sup>2-</sup> | BP86   | B3LYP  | M06    |
|-------------------|--------|--------|--------|
| Aug-cc-pVDZ-PP    | 0      | 0.001  | -0.002 |
| Aug-cc-pVTZ-PP    | -0.007 | -0.006 | -0.005 |
| Lanl2DZ           | 0.067  | 0.069  | 0.032  |
| Lanl2TZ           | 0.026  | 0.026  | 0.015  |
| Lanl2TZ(f)        | 0.01   | 0.01   | 0.002  |
| cc-pVDZ-PP        | 0.017  | 0.017  | 0.009  |
| cc-pVTZ-PP        | 0.001  | 0.003  | 0.001  |
| Def2-TZVP         | 0.018  | 0.019  | 0.015  |
| Def2-TZVPP        | 0.008  | 0.01   | 0.006  |
| Def2-QZVP         | 0.001  | 0.002  | 0.003  |
| Def2-QZVPP        | 0      | 0      | 0      |



Figure S-1A



Figure S-1B



Figure S-2A



Figure S-2B



Figure S-3A



Figure S-3B



Figure S-4A



Figure S-4B


Figure S-5A



Figure S-5B



Figure S-6A



Figure S-6B



Figure S-7A



Figure S-7B



Figure S-8A



Figure S-8B



Figure S-9A



Figure S-9B



Figure S-10A



Figure S-10B



Figure S-11A



Figure S-11B



Figure S-12A



Figure S-12B



Figure S-13



Figure S-14A



Figure S-14B



Figure S-15A



Figure S-15B



Figure S-16



Figure S-17



Figure S-18



Figure S-19A



Figure S-19B



Figure S-20A



Figure S-20B



Figure S-21



Figure S-22A



Figure S-22B



Figure S-23A



Figure S-23B



Figure S-24



Figure S-25



Figure S-26



Figure S-27



Figure S-28



Figure S-29



Figure S-30



Figure S-31



Figure S-32



Figure S-33



Figure S-34



Figure S-35



Figure S-36



Figure S-37



Figure S-38



Figure S-39



Figure S-40



Figure S-41



Figure S-42



Figure S-43



Figure S-44



Figure S-45



Figure S-46



Figure S-47A



Figure S-47B



Figure S-48A



Figure S-48B



Figure S-49A



Figure S-49B



Figure S-50A



Figure S-50B



Figure S-51A



Figure S-51B


Figure S-52A



Figure S-52B



Figure S-53A



Figure S-53B



Figure S-54A



Figure S-54B



Figure S-55A



Figure S-55B



Figure S-56A



Figure S-56B



Figure S-57A



Figure S-57B



Figure S-58A



Figure S-58B

### References

#### Aug-cc-pVDZ:

Cu, Ag, Au: Peterson, K.A.; Puzzarini, C. Theor. Chem. Acc., 2005, 114, 283.

Ga: Peterson, K.A. J. Chem. Phys., 2003, 119, 11099.

### Aug-cc-pVTZ:

Cu, Ag, Au: Peterson, K.A.; Puzzarini, C. Theor. Chem. Acc., 2005, 114, 283.

Ga: Peterson, K.A. J. Chem. Phys., 2003, 119, 11099.

## Lanl2DZ:

Li: Dunning Jr, T. H.; Hay, P. J. *In Methods of Electronic Structure Theory*, **1977**, Vol. 2, Schaefer III, H. F. ed., PLENUM PRESS.

Al, Sc, Cu, Ga, Y, Ag, La, Au: (a) Hay, P. J.; Wadt, W. R. J. Chem. Phys., 1985, 82, 270.

(b) Hay, P. J.; Wadt, W. R. J. Chem. Phys., **1985**, 82, 284. (c) Hay, P. J.; Wadt, W. R. J. Chem. Phys., **1985**, 82, 299.

## Lanl2TZ:

Sc, Cu, Y, Ag, La, Au: (a) Hay, P.J.; Wadt, W.R. J. Chem. Phys., 1985, 82, 299. (b) Roy, L.E.; Hay, P.J.; Martin, R.L. J. Chem. Theory Comput., 2008, 4, 1029.

# Lanl2TZ(f):

Sc, Cu, Y, Ag, La, Au: (a) Hay, P.J.; Wadt, W.R. J. Chem. Phys., 1985, 82, 299. (b) Roy, L.E.; Hay, P.J.; Martin, R.L. J. Chem. Theory Comput., 2008, 4, 1029. (c) Ehlers, A.W.; Bohme, M.; Dapprich, S.; Gobbi, A.; Hollwarth, A.; Jonas, V.; Kohler, K.F.; Stegmann, R.; Veldkamp, A.; Frenking, G. Chem. Phys. Lett., 1993, 208, 111.

### DZVP(DFT orbital):

Li, Al, Ga, Cu, Y, Ag, : Godbout, N.; Salahub, D. R.; Andzelm, J.; Wimmer, E. Can. J. Chem., 1992, 70, 560.

### cc-pVDZ-PP:

Cu, Ag, Au: Peterson, K.A.; Puzzarini, C. Theor. Chem. Acc., 2005, 114, 283.

Ga: Peterson, K.A.; J. Chem. Phys., 2003, 119, 11099.

## cc-pVTZ-PP:

Cu, Ag, Au: Peterson, K.A.; Puzzarini, C. Theor. Chem. Acc., 2005, 114, 283.

Ga: Peterson, K.A.; J. Chem. Phys., 2003, 119, 11099.

### Def2-TZVP:

Li, Al, Sc, Cu, Ga, Y, Ag, La, Au: Weigend, F.; Ahlrichs, R.; Phys. Chem. Chem. Phys., 2005, 7, 3297.

### Def2-TZVPP:

Li, Al, Sc, Cu, Ga, Y, Ag, La, Au: Weigend, F.; Ahlrichs, R.; Phys. Chem. Chem. Phys., 2005, 7, 3297.

### Def2-QZVP:

Li, Al, Sc, Cu, Ga, Y, Ag, La, Au: Weigend, F.; Ahlrichs, R.; Phys. Chem. Chem. Phys., 2005, 7, 3297.

### Def2-QZVPP:

Li, Al, Sc, Cu, Ga, Y, Ag, La, Au: Weigend, F.; Ahlrichs, R.; Phys. Chem. Chem. Phys., 2005, 7, 3297.

Aug-cc-pVDZ:

Sc, Cu: (a) Balabanov, N.B.; Peterson, K.A. J. Chem. Phys., 2005, 123, 064107.
(b) Balabanov, N.B.; Peterson, K.A. J. Chem. Phys., 2006, 125, 074110.
Aug-cc-pVTZ:
Sc, Cu: Balabanov, N.B.; Peterson, K.A. J. Chem. Phys., 2005, 123, 064107.
Aug-cc-pVQZ:
Sc, Cu: Balabanov, N.B.; Peterson, K.A. J. Chem. Phys., 2005, 123, 064107.