Series resistance (R_s) was well-known as a key factor that affects the FF of a device. ³³ R_s mainly composed of the resistance of the conductive glass, the resistance of the electron transport within TiO_2 and the bulk resistance of the electrolyte. The following five equations revealed the relationship between FF and the R_s . ³³ In equation (S1), R_{ch} represented the characteristic resistance of the solar cell. In Equation (S2), R_s and r_s represented the series resistance and the normalized series resistance, respectively. In equation (S3), v_{oc} was defined normalized V_{oc} , k is Boltzman's constant and T is the temperature in Kelvin. In equation (S4), FF_0 was denoted as the idealized fill factor. ³³

$$R_{ch} \approx rac{V_{oc}}{J_{sc}}$$
 (S1)

$$r_s = \frac{R_s}{R_{ch}} \tag{S2}$$

$$v_{oc} = \frac{q}{nkT} * V_{oc}$$
 (S3)

$$FF_0 = \frac{v_{oc} - \ln(v_{oc} + 0.72)}{v_{oc} + 1}$$
 (S4)

$$FF = FF_0 * (1 - r_s)$$
 (S5)

Based on the results of Table.2, set n=1, T=300 K, and it was known that $q=1.6*10^{-19}$, $k=1.38*10^{-23}$, after calculating of the equations above, the results was shown in Table. 3.

From equation (S1), value of R_{ch} decreased with the increase of J_{sc} . Besides, the value of R_s increased with Alq₃ coating. Then from equation (S2), the value of r_s increased. Thus from equation (S5), the value of FF would decrease a lot with Alq₃ coating. However, the FF only decreased from 0.62 to 0.61, nearly without any change. It could be explained that from equation (S3), the idealized fill factor of device with Alq₃ coating was larger than the blank sample because enhancement of V_{oc} and R_s from the retarding of charge recombination shown in the EIS results. The two opposite effects of enhancing FF_0 increasing FF and bigger r_s decreasing caused the FF did not change obviously due to equation (S5).