Supporting Information

Charge Localization Increases Chemical Expansion in Cerium-based Oxides

Dario Marrocchelli,*^{*a,b*} Sean R Bishop,^{*c,d*} Harry L Tuller,^{*c*} Graeme W Watson^{*b*} and Bilge Yildiz*^{*a*}

^a Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.

^b School of Chemistry, Trinity College Dublin, College Green, Dublin 2, Ireland

^c Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA

^d International Institute for Carbon Neutral Energy Research (WPI-I2CNER) Kyushu University, Nishi-ku Fukuoka, Japan

Figure S 1: Total Density of States (DOS) for U = 0, 3 and 5 eV in (a), (b) and (c), respectively. Occupied states are indicated by shaded areas and energies are plotted with respect to the Fermi level. Simple DFT, (a), gives rise to a density of states with no energy gap between the valence and the conduction band, with the Ce 4f states crossing the Fermi level, i.e. a metallic solution. When the U term is added, the appearance of a new Ce 4f state occurs (see blue arrows in (b) and (c)) is observed. For U = 3 eV, these occupied states are not fully separated from the unoccupied ones. This is achieved for U = 5 eV, where we also observed the opening of a band gap (from the valence band to the unoccupied Ce 4f band) of 2.1 eV, as indicated by the red arrow in (c).

Figure S 2: Lattice parameter of CeO_2 vs Hubbard term, U. The points are from a DFT calculation whereas the straight line is a guide to the eye.

U (eV)	Ce ³⁺ projected spin density
0	0.048
1	0.069
2	0.025
3	0.655
4	0.893
5	0.941
6	0.955
7	0.965
8	0.972

Table I: Ionic projected spin density of the Ce^{3+} cation shown in Figure 1 for different U values. For U > 5.0 eV the spin density reaches a value of approximately 1, thus confirming the localization of the 4f electrons.

Figure S 3: : Lattice parameter expansion (%) vs δ for CeO_{2- δ} for different U values. Solid lines are linear fits.

U (eV)	Ce ³⁺ ionic radius (Å)
0	1.082
1	1.093
2	1.101
3	1.110
4	1.116
5	1.119
6	1.125
7	1.125
8	1.124

Table II: Calculated ionic radii for different U values.

Figure S 4: Calculated ionic radii for different U values.