Effect of the orientation of nitro group on the electronic transport properties in single molecular field-effect transistors

X **uqing** X **u,**^{*a*} B in Cui,^{*a*} Guomin Ji,^{*a*} Dongmei Li,^{*a*} and Desheng Liu^{**ab*}

a School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Peoples

Republic of China.

b Department of Physics, Jining University, Qufu 273155, Peoples Republic of China.

* Author to whom correspondence should be addressed. Electronic address: liuds@sdu.edu.cn

Supplementary Information

Details of thermal average calculation

In Fig. 4, we plot the relative total energy of the free $NO₂BDT$ molecule as a function of twist angle *θ*. Then we fit the curve to a harmonic oscillator potential for *θ* ranging from 0˚ to 50˚.

The amplitude of rotation can be written as the standard deviation of θ ,

$$
\sigma = \sqrt{\langle \theta^2 \rangle - \langle \theta \rangle^2} ,
$$

where $\text{Tr}(e^{-H/kT})$ $\text{Tr}(e^{-H/kT}\theta)$ *-H/kT -H/kT e* $\langle \theta \rangle = \frac{\text{Tr}(e^{-H/kT} \theta)}{H/kT}$ is the thermal average.

Hamiltonian of the harmonic oscillator is written as:

$$
H = \frac{I\omega^2}{2}\theta^2 + \frac{1}{2I}L^2,
$$

where *I* is the moment of inertia, $\omega = \sqrt{\kappa/I}$ is the vibration frequency, $L = I \frac{d\theta}{dt}$ is the angular momentum.

Introduce the raising and lowering operators:

$$
\theta = \sqrt{\frac{\hbar}{2I\omega}}(b^+ + b), \quad L = i\sqrt{\frac{\hbar\omega I}{2}}(b^+ - b),
$$

which satisfy the following commutation relations:

$$
[b,b^+] = bb^+ - b^+b = 1
$$
 and $[b,b] = [b^+,b^+] = 0$.

Then we can obtain:

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is © The Owner Societies 2012

$$
H = \hbar \omega (b^+ b + \frac{1}{2}).
$$

The eigen equation is:

$$
H\big|n\big\rangle = E_n\big|n\big\rangle\,,
$$

where $|n\rangle$ is the eigenvector, $E_n = \hbar \omega (n + \frac{1}{2})$ 2 $E_n = \hbar \omega (n + \frac{1}{2})$ is the eigenvalue.

Therefore,

$$
\left\{\begin{aligned}\n\langle \theta \rangle &= \frac{\text{Tr}(e^{-H/kT}\theta)}{\text{Tr}(e^{-H/kT})} = \frac{\sum_{n} \langle n|e^{-H/kT}\theta|n\rangle}{\sum_{n} \langle n|e^{-H/kT}|n\rangle}, \\
\langle \theta^{2} \rangle &= \frac{\text{Tr}(e^{-H/kT}\theta^{2})}{\text{Tr}(e^{-H/kT})} = \frac{\sum_{n} \langle n|e^{-H/kT}\theta^{2}|n\rangle}{\sum_{n} \langle n|e^{-H/kT}|n\rangle}.\n\end{aligned}\right.
$$

Substitute $\theta = \sqrt{\frac{h}{2I\omega}(b^+ + b)}$ $\theta = \sqrt{\frac{\hbar}{m}}(b^+ + b)$ into the two equations above, and we can obtain:

$$
\left\{\begin{aligned}\n\langle \theta \rangle &= 0, \\
\langle \theta^2 \rangle &= \frac{1}{I\omega^2} \langle H \rangle = \frac{1}{I\omega^2} \frac{\hbar \omega}{2} \coth(\frac{\hbar \omega}{2kT}).\n\end{aligned}\right.
$$
\nWhen $kT >> \hbar \omega$, $\langle \theta^2 \rangle \approx \frac{kT}{I\omega^2} = \frac{kT}{\kappa}$.

At room temperature ($T = 300K$), $kT = 25.86$ meV. κ can be obtained from the curve fitting of Fig. 4, $\kappa = 0.154$ meV/deg². Take into account these parameters above, we obtain:

$$
\sigma = \sqrt{\langle \theta^2 \rangle - \langle \theta \rangle^2} = \sqrt{\frac{kT}{\kappa}} = 12.96 \text{deg}.
$$