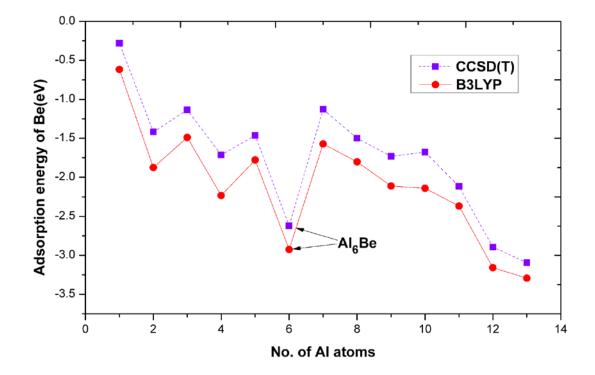
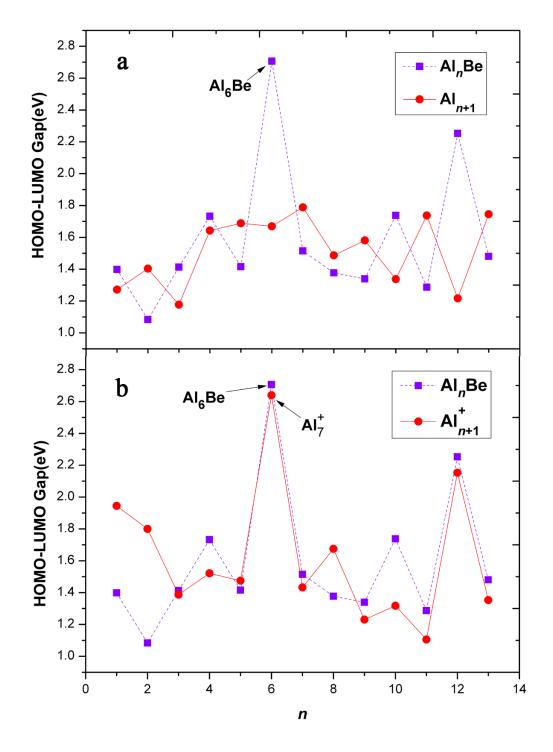
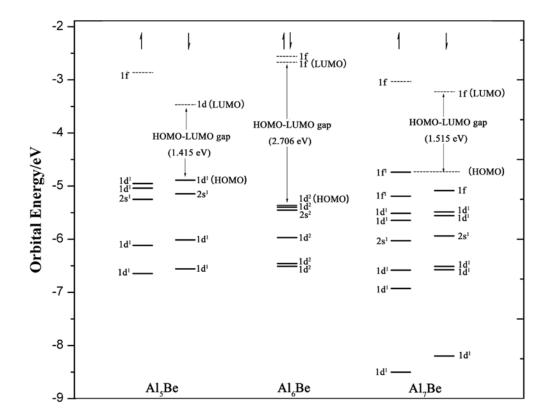
Electronic Supplementary Information (ESI) available for:

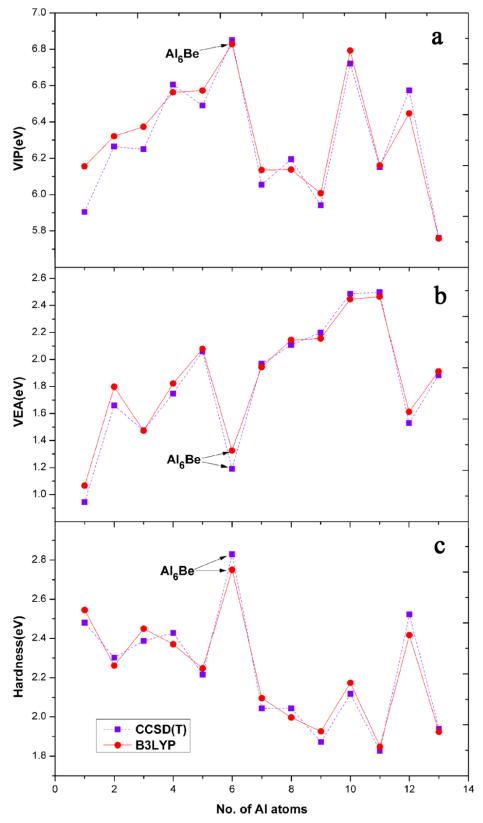

Evolution of the structural and electronic properties of beryllium-doped aluminum clusters: comparison with neutral and cationic aluminum clusters

Wei-Ming Sun, Ying Li, Di Wu^{*}, Zhi-Ru Li


Institute of Theoretical Chemistry, State Key Laboratory of Theoretical and Computational Chemistry, Jilin University, Changchun 130023, People's Republic of China. Tel: +86-431-81707218; E-mail: wud@mail.jlu.edu.cn

clusters	$E_{ m b}$		ΔE		$\Delta^2 E$	
	CCSD(T)	B3LYP	CCSD(T)	B3LYP	CCSD(T)	B3LYP
AlBe	0.141	0.308	-0.281	-0.616		
Al ₂ Be	0.622	0.822	-1.584	-1.849	-0.424	-0.333
Al ₃ Be	0.968	1.162	-2.008	-2.182	-0.017	-0.036
Al ₄ Be	1.179	1.373	-2.024	-2.217	0.178	0.163
Al ₅ Be	1.290	1.486	-1.846	-2.054	-1.581	-1.396
Al ₆ Be	1.596	1.767	-3.427	-3.450	2.093	1.975
Al ₇ Be	1.563	1.731	-1.334	-1.476	-0.822	-0.662
Al ₈ Be	1.629	1.776	-2.156	-2.138	-0.038	-0.168
Al ₉ Be	1.685	1.829	-2.194	-2.306	0.012	-0.053
Al ₁₀ Be	1.731	1.877	-2.182	-2.359	-0.414	-0.096
Al ₁₁ Be	1.803	1.925	-2.595	-2.454	-0.667	-0.757
Al ₁₂ Be	1.915	2.024	-3.263	-3.211	0.498	0.563
Al ₁₃ Be	1.976	2.069	-2.765	-2.648		


Table S1. Binding energy per atom (E_b , in eV), the second difference in energy ($\Delta^2 E$, in eV), and the dissociation energy (ΔE , in eV) of the most stable Al_nBe (n = 1-13) clusters.


Figure S1. The adsorption energies of Be (E_{ad}) (in eV) for the lowest-energy structures of Al_nBe clusters with $1 \le n \le 13$ at the CCSD(T)/aug-cc-pVDZ (dashed line) and B3LYP/aug-cc-pVDZ (solid line) levels, shown as a function of the number of Al atoms.

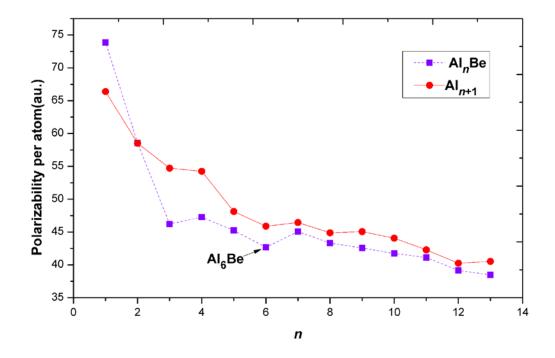

Figure S2. The HOMO–LUMO energy gaps (in eV) for the lowest-energy structures of Al_nBe (dashed line) and (a) Al_{n+1} clusters (solid line) and (b) Al_{n+1}^+ cluster cations (solid line) at the B3LYP/aug-cc-pVDZ level, shown as a function of *n*.

Figure S3. Orbital energies of valence 1d, 2s, and partial 1f orbitals of the Al_5Be , Al_6Be , and Al_7Be clusters. Occupied states are indicated by solid lines, and unoccupied ones by dotted lines.

Figure S4. The (a) vertical ionization potentials (*VIP*s), (b) vertical electron affinities (*VEA*), (c) hardnesses (η , in eV) for the lowest-energy structures of Al_nBe clusters with $1 \le n \le 13$ at the CCSD(T)/aug-cc-pVDZ (dashed line) and B3LYP/aug-cc-pVDZ (solid line) levels, shown as a function of the number of Al atoms.

Figure S5. Polarizabilities per atom (in au.) for the lowest-energy structures of Al_nBe (dashed line) and Al_{n+1} clusters (solid line) at the B3LYP/aug-cc-pVDZ level, shown as a function of *n*.