Electronic Supplementary Information

Quantum Chemical Characterization and Design of Host Materials based on Phosphine Oxide-Substituted (Triphenylamine) Fluorene for (deep) Blue Phosphors in OLEDs

Jie Wu,^a Shui-Xing Wu,^a Yong Wu,^a Yu-He Kan,^b Yun Geng,^a and Zhong-Min Su^{*a}

^a Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin, People's Republic of China

^b Jiangsu Province Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University Huaiyin, China. *E-mail addresses: <u>zmsu@nenu.edu.cn</u> Phone: +86-431-85099108; Fax: 86-431-85684009*

Figures and tables

Fig. S1 The simulated absorption spectra of *p*POAPF and *p*PODPF in benzene solution by employing various TDDFT methods with 6-31+G**, together with their corresponding experiment values.

Fig. S2 The simulated emission spectra of *p*POAPF and *p*PODPF in benzene solution by employing TD-PBE0 method with $6-31+G^{**}$, together with their corresponding experiment values.

Fig. S3 The simulated absorption spectra of FIrpic and FCNIr in toluene and benzene by employing TD-PBE0 method with $6-31+G^{**}$, together with their corresponding experiment values.

Fig. S4 The simulated emission and absorption spectra from pPODPF/pPOAPF and FIrpic in benzene and toluene solutions, respectively, by employing PBE0 methods with 6-31+G**, together with their corresponding experimental values.

Fig. S5 The animated figure displays the frequency vibration at 1.60 cm⁻¹ mode with "bending" character for *m*POAPF.

Fig. S6 The animated figure displays the frequency vibration at 4.85 cm⁻¹ mode with "bending" character for *m*POAPF.

Fig. S7 The animated figure displays the frequency vibration at 9.89 cm^{-1} mode for *p*POAPF.

Fig. S8 The animated figure displays the frequency vibration at 10.40 cm^{-1} mode for *p*POAPF.

Fig. S9 The host emission and guest absorption spectra in four groups of host-guest systems.

Fig. S10 The obtained three T_1 geometries (configurations 1-3) without imaginary frequency from different initial configurations by optimized calculation using spin-restricted DFT.

Table S1 The absorption spectra calculated by TDDFT with $6-31+G^{**}$ for *p*POAPF and *p*PODPF in benzene solution, together with the available experimental values.

Fig. S1 The simulated absorption spectra of *p*POAPF and *p*PODPF in benzene solution by employing various TDDFT methods with $6-31+G^{**}$, together with their corresponding experiment values.¹

Fig. S2 The simulated emission spectra of *p*POAPF and *p*PODPF in benzene solution by employing TD-PBE0 method with $6-31+G^{**}$, together with their corresponding experiment values.¹

Fig. S3 The simulated absorption spectra of FIrpic and FCNIr in toluene and benzene by employing TD-PBE0 method with $6-31+G^{**}$, together with their corresponding experiment values.^{2,3}

Fig. S4 The simulated emission and absorption spectra from *p*PODPF/*p*POAPF and FIrpic in benzene and toluene solutions, respectively, by employing PBE0 methods with $6-31+G^{**}$, together with their corresponding experimental values.^{1,2}

Fig. S9 The host emission and guest absorption spectra in four groups of host-guest systems.

Fig. S10. a) The obtained three T_1 geometries (configurations 1-3) without imaginary frequency from different initial configurations by optimized calculation using spin-unrestricted PBE0 functional (UPBE0), the corresponding spin density distribution and triplet energies at three T_1 geometries. b) The obtained T_1 geometries without imaginary frequency from different initial configurations by optimized calculation using spin-unrestricted PBE0, O3LYP, and M062X functionals, the

corresponding spin density distribution and triplet energies at the T_1 geometries. c) The energies of three optimized T_1 geometries by TD-PBE0 calculation from configurations **1**, **3** (Fig. S10a) and S₀ geometry (PBE0), respectively. And, hole-electron pairs of T_1 transition orbitals based on the three optimized T_1 geometries.

Compounds	Cal.					Exp.
	TDDFT	State (f _{max})	$\lambda(nm)$	Config. (CI coeff.)	Assignment	$\lambda(nm)$
pPOAPF	B3LYP	$S_0 \rightarrow S_9 \ (0.65)$	308	$\text{H-1} \rightarrow \text{L}(91\%)$	$\pi \to \pi^{^*}$	294 ¹
	TPSSh	$S_0 \to S_{12} \ (0.21)$	318	$\mathrm{H} \rightarrow \mathrm{L} + 8 \; (97\%)$	$\pi \to \pi^{^*}$	-
	PBE0	$\mathrm{S}_{0} \rightarrow \mathrm{S}_{7} \left(0.68\right)$	299	$\text{H-1} \rightarrow \text{L}(90\%)$	$\pi \to \pi^{*}$	-
pPODPF	B3LYP	$S_0 \rightarrow S_1 \ (0.65)$	310	$\mathrm{H} \rightarrow \mathrm{L}(92\%)$	$\pi \to \pi^{*}$	295 ¹
	TPSSh	$S_0 \rightarrow S_1 \left(0.51 \right)$	318	$\mathrm{H} \rightarrow \mathrm{L}(87\%)$	$\pi \to \pi^{*}$	-
	PBE0	$S_0 \rightarrow S_1 \left(0.72 \right)$	302	$\mathrm{H} \rightarrow \mathrm{L}(94\%)$	$\pi \rightarrow \pi^{*}$	-

Table S1 The absorption spectra calculated by TDDFT with $6-31+G^{**}$ for *p*POAPF and *p*PODPF in benzene solution, together with the available experimental values.

References

- 1 F. M. Hsu, C. H. Chien, C. F. Shu, C. H. Lai, C. C. Hsieh, K. W. Wang and P. T. Chou, *Adv. Funct. Mater.*, 2009, **19**, 2834-2843.
- 2 G. Cheng, T. Fei, Y. Zhao, Y. Ma and S. Liu, Org. Electron., 2010, 11, 498-502.
- 3 K. S. Yook, S. O. Jeon, C. W. Joo and J. Y. Lee, *Thin Solid Films*, 2010, **518**, 4462-4466.