Supplementary Information

Interactions of the intact FsrC membrane histidine kinase with the tricyclic peptide inhibitor siamycin I revealed through synchrotron radiation circular dichroism

Mary K. Phillips-Jones^{*+a}, Simon G. Patching^{+b,c}, Shalini Edara^b, Jiro Nakayama^d, Rohanah Hussain^e and Giuliano Siligardi^{*e}

^a School of Pharmacy and Biomedical Sciences, Faculty of Science and Technology, University of Central Lancashire, Preston, Lancashire, United Kingdom; Tel +44 (0)1772 895831; Fax: +44 (0) 1772 892929; E-mail:MPhillips-Jones@uclan.ac.uk

^b Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom. E-mail: S.G.Patching@leeds.ac.uk; Fax: +44 (0)113 343 3069; Tel: +44 (0)113 343 3172; and eshalini@hotmail.co.uk;

^c School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom.

^d Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka 812-8581, Japan. E-mail: nakayama@agr.kyushu-u.ac.jp

^e Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom. E-mail: giuliano.siligardi@diamond.ac.uk.

* co-corresponding authors

⁺ These authors contributed equally to the work

**Corresponding authors:*

- (2) Dr Mary K. Phillips-Jones, School of Pharmacy and Biomedical Sciences, Faculty of Science and Technology, University of Central Lancashire, Preston, Lancashire, PR1 2HE, United Kingdom. Tel: +44 (0) 1772 895831.
- (2) Dr Giuliano Siligardi, Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, United Kingdom. Tel: +44 (0) 1235 778425;

Email addresses:

MPhillips-Jones@uclan.ac.uk; giuliano.siligardi@diamond.ac.uk

1. Figures in support of Supplementary Information

Fig. S1.

Fig. S1. Purity of preparations of intact FsrC used in the study. The intact membrane protein was prepared as described previously¹² using mixed *E. coli* membranes. M, molecular mass markers; Lanes 1 and 2 show purified protein from two separate preparations. The apparent mass is typical of that observed previously for the intact sequence-verified protein,⁵ which runs anomalously in SDS-PAGE.

Fig. S2. Purity of purified siamycin I determined by mass spectrometry. Samples (20 pmol/ul) in methanol/formic acid mixtures were analysed by positive ionisation in a Q-tof electrospray ionisation instrument. The observed mass of siamycin I, which possesses two proton adducts, $m/2H^+$, is therefore 2161.84 and is in good agreement with the expected mass of 2164. Purity is > 90%.

Fig. S2.

Fig. S3. Interaction between siamycin I and GBAP revealed through SRCD spectroscopy in the near-UV region. *Solid*) SRCD spectrum of GBAP (60 μ M) (dissolved in acetonitrile) in 10 mM potassium phosphate pH 7.5 containing 0.05% DDM, following subtraction of control spectrum (buffer plus equivalent concentration of acetonitrile); *Dash*): SRCD spectrum of siamycin I (100 μ M) (dissolved in methanol) in the above buffer , following subtraction of control spectrum (buffer plus equivalent concentration of methanol); SRCD spectrum of GBAP (60 μ M) (dissolved in acetonitrile) plus siamycin I (100 μ M) (dissolved in methanol), following subtraction of control spectrum (buffer plus equivalent concentration of methanol); SRCD spectrum of GBAP (60 μ M) (dissolved in acetonitrile) plus siamycin I (100 μ M) (dissolved in methanol), following subtraction of control spectrum (the above buffer containing equivalent concentrations of acetonitrile and methanol). Ten measurements (scans were obtained with integration time of 1 sec, bandwidth of 2 nm, 20 °C). Unsmoothed data are shown.