Electronic Supplementary Information

Table S1 Selected kinetics models of thermal decomposition in the solid state.	
--	--

Reaction	Reaction model	Model function		
model No.		Туре	Integral form $G(\alpha)$	Differential form $f(\alpha)$
4	Two-dimensional diffusion	Jander equation, $n = 2$	$[1-(1-\alpha)^{1/2}]^2$	$(1-a)^{1/2}[1-(1-a)^{1/2}]^{-1}$
6	Three-dimensional diffusion	Jander equation, $n = 2$	$[1-(1-\alpha)^{1/3}]^2$	$(3/2)(1-\alpha)^{2/3}[1-(1-\alpha)^{1/3}]^{-1}$
8	Three-dimensional diffusion	Anti-Jander equation	$[(1+\alpha)^{1/3}-1]^2$	$(3/2)(1+\alpha)^{2/3}[(1+\alpha)^{1/3}-1]^{-1}$
17	Random nucleation and subsequent growth	Avrami-Erofeev equation, n = 3/2	$[-\ln(1-\alpha)]^{3/2}$	$(2/3) (1-\alpha) [-\ln(1-\alpha)]^{-1/2}$
20	Random nucleation and subsequent growth	Avrami-Erofeev equation, n = 4	$\left[-\ln(1-\alpha)\right]^4$	$(1/4)(1-\alpha)[-\ln(1-\alpha)]^{-3}$
41	Deceleration type of α - <i>t</i> curve	Chemical reaction, $n = 3$	$(1-\alpha)^{-2}$	$(1/2)(1-\alpha)^3$