
Appendices 

 

I.A – The stationary nature of the QQT collision frame and apse frame DCS at θ = 0 and θ = π 

The azimuthal symmetry of the DCS constrains its mathematical form to be stationary at 0   and 

   in the scattering frame and in the apse frame. In this appendix we prove that these conditions are 

indeed fulfilled within the QQT framework. As previously noted, the QM DCSs automatically fulfill this 

requirement in the collision frame, because they can be written as a series of Legendre polynomials, all of 

which individually meet this criterion. When transformed into the apse frame, the constraints are then met 

in the same fashion as the QQT DCSs.  

As a starting point we shall consider the QQT DCS in the apse frame. From eq 9 one writes the QQT 

apse-frame scattering amplitude as 
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where the dependence of all quantities in eq I.1 on θ has been made explicit. Equation 10 can be used to 

write out the θ dependence of the phase shift, η, as 
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where A(γa) is independent of θ (and hence does not affect the behavior of the DCS as a function of θ ). 

We now turn our attention to the first stationary point, located at θ = 0. Around this region, one can 

neglect all but the leading terms in the Taylor expansion of cos , such that 
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Utilizing eq I.3 then allows us to approximate the cos  dependence of eq I.2 in the forward scattered 

direction to  
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Note that the last line of eq I.4 is obtained by performing a Taylor expansion of 2 1/2(1 )a , about 

2 0a  , keeping only the leading term in 2a . The behavior of the exponential part of eq I.1 around θ = 0 

can then be written as 
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Taking the derivative of eq I.5 with respect to θ and evaluating as θ tends to zero then yields 
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At the second stationary point, where θ → π, cos  can instead be approximated by 
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Using the same arguments as were employed for the case of θ = 0, it can be shown that 
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when θ = π also. The exponential part of the QQT apse frame scattering amplitude has thus been shown to 

go to zero as θ goes to 0 or π, as required. 

The non-exponential part of eq I.1 can also be differentiated with respect to θ, in this case yielding the 

expression 
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Since cos  is obviously stationary at θ = 0 and θ = π, the geometric scattering amplitude must also 

display the same behavior, such that 
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eqs I.6, I.8, and I.10 can then be jointly substituted into eq I.1 to yield the required behavior in the apse 

frame 
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Additionally it can be shown (by summing the scattering amplitude over all final states) that the first 

derivative of the normalization constant, C(β), with respect to β is also equal to zero 
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Combining eqs I.1, I.11, and I.12, the first derivatives of the QQT DCSs in the apse frame must also 

necessarily be stationary at 0  , π as is required: 
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Note that eq 14 relates the QQT collision frame DCSs to its apse frame counterpart, hence: 
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As was shown in eq 19, setting θ equal to 0 or π gives us the simple relations 
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which leads to: 
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Finally 
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Note that I.18 is zero for θ =0 and for θ =π. 

Combining eqs I.14, I.17, and I.18, the first derivatives of the QQT DCSs in the collision frame are 

stationary at 0  , π. 

 

I.B – The stationary nature of the QM apse frame and collision frame DCS at θ = 0 and θ = π 

Arthurs and Dalgarno
1
 showed that 
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which implies that at 0   or   , 
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eq 14 can also be applied to relate the QM collision frame DCSs to its apse frame counterpart: 
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Inspection of eq I.18 and combining with eqs I.20, I.21 shows that  
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Table I: Numerical values of the closed-shell QQT NO(X)+He DCSs from 0j   to 1 12j    at a 

collision energy of 63meVL

colE   for 0   and   . Values are given in both the kinematic apse 

and the collision frames. 

 

 
d d ( )a    

(Å
2
/sr) 

 d d ( )    

(Å
2
/sr) 

j’ θ = 0 θ = π  θ = 0 θ = π 

1 3.83E-05 0.192  3.682 0.054 

2 0.0515 0.104  538.25 0.029 

3 0.0028 0.281  7.064 0.077 

4 0.0605 0.527  52.81 0.142 

5 0.0045 0.575  1.653 0.152 

6 0.0375 0.280  6.555 0.072 

7 0.0052 1.343  0.468 0.337 

8 0.0244 0.354  1.208 0.086 

9 0.0056 1.059  0.157 0.245 

10 0.0163 0.343  0.263 0.075 

11 0.0058 0.357  0.054 0.073 

12 0.0111 0.135  0.059 0.025 

 

II –The angular momentum wave function of the open-shell ground state NO(X) Molecule 

The open-shell ground state 2NO(X Π)molecule possesses one unpaired electron in its lowest anti-bonding 

Π orbital. This gives rise to a projection of the electronic orbital angular momentum, L, onto the 

inter-nuclear axis specified by the angular momentum quantum number 1   . In the limit where Hund’s 

case (a) applies exactly, the unpaired electron spin 1
2

S  makes a further projection onto the inter-nuclear 

axis characterized by the quantum number 1
2

    The total projection of j = L+ S  onto the 

inter-nuclear axis is then characterized by the quantum number  . 

This coupling of angular momenta gives rise to two spin-orbit states, 2
1

 
and 2

3 , where 
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2
1||   is the ground spin-orbit state due to the positive spin-orbit constant of A0.=123.13cm

-1 

associated with the NO molecule.
2
 As long as the pure rotational energy of the NO molecule, given by 

2

0( )rotH B  j S L  (where B0 = 1.6961cm
-1

)
2
 is much smaller than the energy difference between the 

two spin-orbit channels, given by 0SOH A L S , then the angular momentum eigenfunctions of the NO 

molecule can be written as 

 1

2
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Note that the quantum state (projection) numbers, Λ and Σ, are implicitly defined since when 2
1 one 

has 2
1 , 1 , while when 2

3 one has instead 2
1 , 1 . So in the case of a signed 

value of Ω the quantum numbers Σ and Λ are uniquely determined and are therefore omitted in eq (II.1). 

The parity of the NO molecular rotational wavefunction is denoted with the spectroscopic parity index 

1   , such that the parity is given by /2( 1) jp   . The interaction with electronically excited states, or 

the reduction in symmetry arising from the approach of a collision partner, leads to a further Λ-doublet 

splitting of the rotational energy levels. In the case of the NO molecule, this gives rise to a small positive 

energy shift (typically << 1cm
-1

) of the 1    or spectroscopic f-labeled states with respect to the 1   

or spectroscopic e-labeled states.  

For higher rotational states, around j > 7.5, the rotational energy splitting become significant compared to 

the spin-orbit energy splitting, and the coupling of the angular momenta within the NO molecule is no 

longer well described by Hund’s case (a). The two spin-orbit channels become mixed, where the 

probability amplitude
3
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quantifies the degree of mixing between the spin-orbit ground 
2
1

 
and exited 

2
3  states. As an 

example, for the rotational state j = 8.5, this probability amplitude takes a value of 1238.05.8 jb . The 

wavefunctions of the NO molecule must now be written as a linear combination of the two spin-orbit 

eigenstates, such that the lower spin-orbit channel is now given by 

 2 31
1 2 2
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and the upper spin-orbit channel by 
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 2 3 1
2 2 2

| , , , 1 | , , , | , , ,j jF j m b j m b j m              (II.4) 

The mixed spin-orbit states specified by the indices F1 and F2 lead to an additional physical interpretation 

of the symmetry label specifying the Λ-doublet level. For the ground spin-orbit state, the 1    (or f ) 

label corresponds to A  symmetry, in which the molecular wavefunction is anti-symmetric with respect 

to reflection in the plane of rotation, while the 1   (e) label indicates A  symmetry, in which the 

molecular wavefunction is symmetric with respect to this reflection (this ordering is then reversed for the 

upper spin-orbit state). In the classical high-j limit, these labels correspond to the case in which the 

electron in the unpaired Π
*
 orbital lies either out of ( 1   or f ), or in the plane of rotation ( 1  or e) of 

the NO molecule. 
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