Supplementary Information

Assemblies of Polyvinylpyrrolidone-capped Tetrahedral and Spherical Pt Nanoparticles in Polyelectrolyte: Hydrogen Underpotential Deposition and Electrochemical Characterization

Sarah Jaber,^a Pamela Nasr,^a Yan Xin,^b Fatima Sleem,^a and Lara I. Halaoui^{a*}

a) Chemistry Department, American University of Beirut, Beirut 110236 Lebanon, and b) National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32306

*Corresponding author: Lara.Halaoui@aub.edu.lb

Figure SI.1 Histogram showing the size distribution of shapes (spherical/ellipsoidal, some rodlike or undefined) other than tetrahedral resulting from the preparation of PVP-TH-Pt NPs. The average size is 3.66 ± 1.02 nm (N=151) by averaging the long and short axes.

Figure SI.2 TEM images of PVP-TH-Pt NPs stored in solution for 4 months at 4 $^{\circ}$ C drop cast (of 8 μ L of solution) on C/Cu grid.

Figure SI.3 TEM image and size distribution (N=200) of PVP-S-Pt NPs prepared by reduction of Pt(II) (K₂PtCl₄) with ethanol. The film is (PDDA/PVP-S-Pt)₁ on SiO_x/Cu grid.

Figure SI.4 CVs in deaerated 1 M H_2SO_4 at (PDDA/PVP-TH-Pt)₄ with increasing the positive scan limit (first scan from 0.8 V, last scan from 1.8 V). The inset shows plots of the charge for H(S), H(W), and total charge for H_{upd} vs. the positive potential scan limit. Scan rate is 20 mV/s.

Figure SI.5 CVs in deaerated 1 M H_2SO_4 at (PDDA/PVP-S-Pt)₄ with increasing the positive scan limit (first scan from 0.8 V, last scan from 2.3 V). The inset shows plots of the charge for H(S), H(W), and total charge for H_{upd} vs the positive potential scan limit. Scan rate is 20 mV/s.

Figure SI.6 10 consecutive cyclic voltammograms at $(PDDA/PVP-TH-Pt NP)_4$ in 1 M H₂SO₄ at 20 mV/s. The line marked in red in the inset is the first scan, followed by nine scans in black. (Move to SI)

Figure SI.7 Cyclic voltammograms in deaerated 1 M H_2SO_4 at (a) (PDDA/PVP-TH-Pt)₄ and (b) (PDDA/PVP-TH-Pt)₁₀ scanned from 2.3 V. Scan rate is 20 mV/s.

Figure SI.8 (A) 5 cyclic voltammograms acquired at an ITO electrode scanned consecutively between 1.8 V and -0.25 V in 1 M H_2SO_4 at 20 mV/s. (B) 5 CVs at ITO (a) and a CV at (PDDA/PVP-TH-Pt)₁₀ (b) acquired between 1.8 V and -0.25 V in 1 M H_2SO_4 at 20 mV/s. The scans started at the positive limit.

Figure SI.9 CVs in deaerated 1 M H_2SO_4 at (PDDA/PVP-TH-Pt)₄, (PDDA/PVP-S-Pt)₄, and PDDA/PAC-Pt)₄ and at a polycryst-Pt disk electrode. Scan rate is 20 mV/s.

Figure SI.10 CVs in deaerated 1 M H_2SO_4 at (PDDA/PVP-TH-Pt)₄ (a, red), (PDDA/PVP-S-Pt)₄ (b, black). Scan rate is 20 mV/s.