Supporting Information

Drastic sensitivity enhancement in ^{29}Si MAS NMR in zeolites and mesoporous silica materials by paramagnetic doping of Cu^{2+}

Satoshi Inagaki,* Izuru Kawamura, Yukichi Sasaki, Kaname Yoshida, Akira Naito, Yoshihiro Kubota

Table S1 Textural properties of mesoporous silica materials and zeolite beta

Sample	BET	Micropore	Mesopore	Mesopore	d_{100}	Thickness of
	surface	volume	volume	diameter, D	value	
	area	(t-plot)	(BJH)	(BJH)	(XRD)	mesopore wall,
	$/ m^2 g^{-1}$	$/ cm^3 g^{-1}$	$/ \text{ cm}^3 \text{ g}^{-1}$	/ nm	/ nm	t^a/nm
MCM-41	1150	< 10 ⁻⁴	1.04	2.8	3.48	1.7
SBA-15	1007	0.025	1.16	8.3	9.80	3.0
dealuminated beta	457	0.228	_	_	_	_
pure silica beta	488	0.203	_	_	_	_
[Fe]-beta	560	0.240	_	_	_	_

 $[\]overline{a}$ The thickness of mesopore wall, t, was estimated using the equation (1):

$$t = \frac{2}{\sqrt{3}}d_{100} - D \quad (1)$$

Figure Captions in Supporting Information

Figure S1. Powder XRD patterns of (a) MCM-41 and (b) SBA-15.

Figure S2. Nitrogen adsorption-desorption isotherms at 77 K of (a) MCM-41 and (b) SBA-15. The isotherm of (b) was offset vertically with 800 cm³ (S.T.P.) g⁻¹. Open and closed symbols mean adsorption and desorption branches, respectively.

Figure S3. Pore size distributions of (a) MCM-41 and (b) SBA-15 determined by the BJH method.

Figure S4. Typical SEM images of (a) MCM-41 and (b) SBA-15.

Figure S5. Peak-area distributions of Q², Q³ and Q⁴ signals by various recycle times from 3 to 240 s. (a) Unmodified SBA-15; (b) 1.0-Cu(NO₃)₂/SBA-15; (c) 1.0-Cu-EDTA/SBA-15.

Figure S6. Powder XRD patterns of (a) dealuminated beta, (b) pure silica beta and (c) [Fe]-beta (Si/Fe = 58).

Figure S7. Nitrogen adsorption-desorption isotherms at 77 K of (a) dealuminated beta, (b) pure silica beta and (c) [Fe]-beta (Si/Fe = 58). The isotherms of (b) and (c) were offset vertically with 200 and 400 cm^3 (S.T.P.) g^{-1} , respectively. Open and closed symbols mean adsorption and desorption branches, respectively.

Figure S8. Typical SEM images of (a) dealuminated beta, (b) pure silica beta and (c) [Fe]-beta (Si/Fe = 58).

Figures S9. (A) Relative peak heights of Q⁴ signals at -112 ppm by various recycle times from 3 to 30 s. (\circ) Unmodified deAl-beta; (\triangle) 0.1-Cu(NO₃)₂/deAl-beta; (\diamondsuit) 0.3-Cu(NO₃)₂/deAl-beta; (\bigcirc) 1.0-Cu(NO₃)₂/deAl-beta.

(B) Relative peak heights of Q^4 signals at -115 ppm by various recycle times from 3 to 30 s. (\circ) Unmodified deAl-beta; (\triangle) 0.1-Cu(NO₃)₂/deAl-beta; (\diamondsuit) 0.3-Cu(NO₃)₂/deAl-beta; (\square) 0.5-Cu(NO₃)₂/deAl-beta; (\bullet) 1.0-Cu(NO₃)₂/deAl-beta.

Figure S10. Relative peak heights of Q⁴ signals at -112 ppm by various recycle times from 3 to 30 s. (\circ) unmodified deAl-beta; (\triangle) 1.0-Co(NO₃)₂/deAl-beta; (\diamondsuit) 1.0-Ni(NO₃)₂/deAl-beta; (\bullet) 1.0-Cu(NO₃)₂/deAl-beta.

Figure S1. Powder XRD patterns of (a) MCM-41 and (b) SBA-15.

Figure S2. Nitrogen adsorption-desorption isotherms at 77 K of (a) MCM-41 and (b) SBA-15. The isortherm of (b) was offset vertically with 800 cm³ (S.T.P.) g⁻¹. Open and closed symbols mean adsorption and desorption branches, respectively.

Figure S3. Pore size distributions of (a) MCM-41 and (b) SBA-15 determined by the BJH method.

Figure S4. Typical SEM images of (a) MCM-41 and (b) SBA-15.

Figure S5. Peak-area distributions of Q², Q³ and Q⁴ signals by various recycle times from 3 to 240 s. (a) Unmodified SBA-15; (b) 1.0-Cu(NO₃)₂/SBA-15; (c) 1.0-Cu-EDTA/SBA-15.

^{*}The broad spectra of 3, 5 and 10 s (recycle time) in unmodified SBA-15 are impossible to deconvolute as Q², Q³ and Q⁴ signals.

Figure S6. Powder XRD patterns of (a) dealuminated beta, (b) pure silica beta and (c) [Fe]-beta (Si/Fe = 58).

Figure S7. Nitrogen adsorption-desorption isotherms at 77 K of (a) dealuminated beta, (b) pure silica beta and (c) [Fe]-beta (Si/Fe = 58). The isotherms of (b) and (c) were offset vertically with 200 and 400 cm³ (S.T.P.) g⁻¹, respectively. Open and closed symbols mean adsorption and desorption branches, respectively.

Figure S8. Typical SEM images of (a) dealuminated beta, (b) pure silica beta and (c) [Fe]-beta (Si/Fe = 58).

Figures S9. (A) Relative peak heights of Q⁴ signals at -112 ppm by various recycle times from 3 to 30 s. ($^{\circ}$) Unmodified deAl-beta; ($^{\triangle}$) 0.1-Cu(NO₃)₂/deAl-beta; ($^{\circ}$) 0.3-Cu(NO₃)₂/deAl-beta; ($^{\circ}$) 1.0-Cu(NO₃)₂/deAl-beta.

Figures S9. (B) Relative peak heights of Q⁴ signals at -115 ppm by various recycle times from 3 to 30 s. ($^{\circ}$) Unmodified deAlbeta; ($^{\triangle}$) 0.1-Cu(NO₃)₂/deAl-beta; ($^{\circ}$) 0.3-Cu(NO₃)₂/deAl-beta; ($^{\circ}$) 1.0-Cu(NO₃)₂/deAl-beta.

Figure S10. Relative peak heights of Q⁴ signals at -112 ppm by various recycle times from 3 to 30 s. ($^{\circ}$) Unmodified deAlbeta; ($^{\triangle}$) 1.0-Co(NO₃)₂/deAl-beta; ($^{\diamond}$) 1.0-Ni(NO₃)₂/deAl-beta; ($^{\circ}$) 1.0-Cu(NO₃)₂/deAl-beta.