Electronic Supplementary Information

Mechanistic Insight into the Hydrazine Decomposition on Rh(111): Effect of Reaction Intermediate on Catalytic Activity

Zhigang Deng, Xiaoqing Lu*, Zengqiang Wen, Shuxian Wei, Yunjie Liu, Dianling Fu,

Lianming Zhao, Wenyue Guo*

College of Science, China University of Petroleum, Qingdao, Shandong 266580, P. R.

China

*Corresponding authors: Xiaoqing Lu, Wenyue Guo

E-mail address: luxq@upc.edu.cn and wyguo@upc.edu.cn

Telephone: 86-532-8698-1334; Fax numbers: 86-532-8698-3363

Fig. S1. The metastable adsorption configurations involved in hydrazine decomposition on Rh(111).

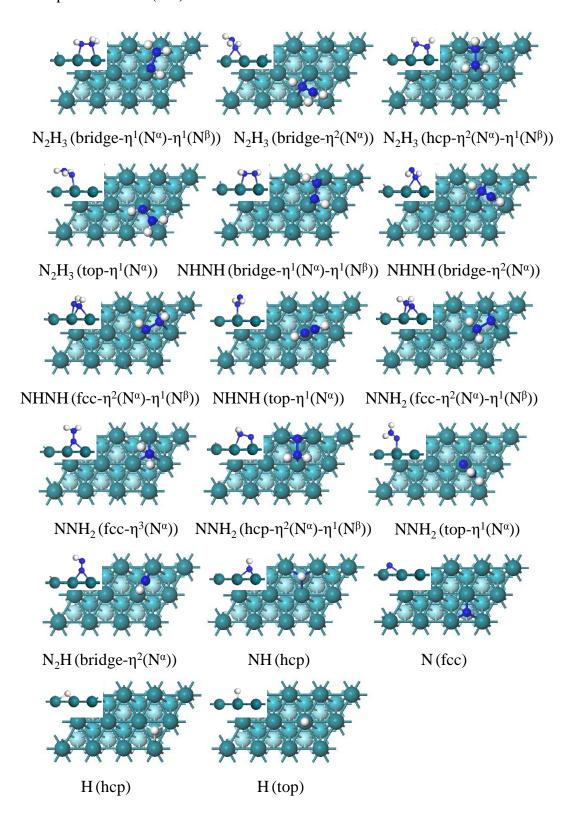
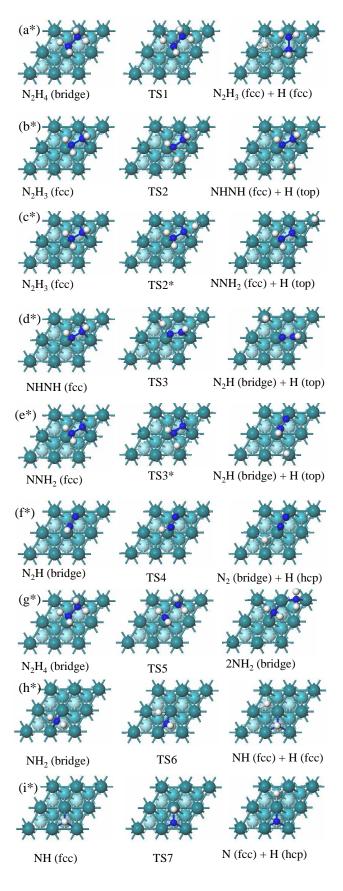
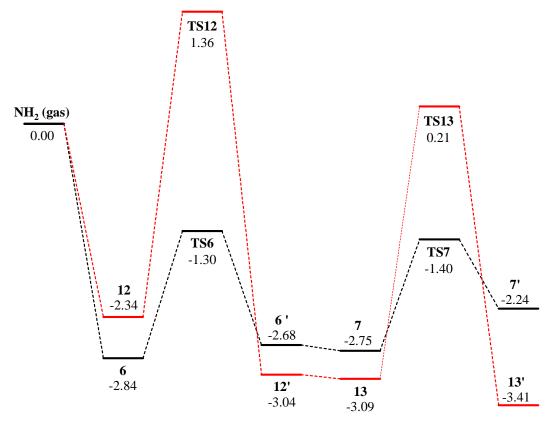




Fig S2. Elementary steps of intramolecular N_2H_4 decomposition on Rh(111) (2×2) slab.

Fig. S3 PESs of NH_2 decomposition on Rh(111). The energy reference corresponds to the total energy of one gas-phase NH_2 , one clean slab, and two adsorbed NH_2 fragment.

6, $NH_2^* + 2NH_2^*$; **6'**, $[NH + H]^* + 2NH_2^*$; **7**, $NH^* + H^* + 2NH_2^*$; **7'**, $[N + H]^* + H^* + 2NH_2^*$; **12**, $[NH_2 + NH_2]^* + NH_2^*$; **12'**, $[NH + NH_3]^* + NH_2^*$; **13**, $[NH + NH_2]^* + NH_3^*$; **13'**, $[N + NH_3]^* + NH_3^*$.

Table S1 Coadsorption configurations, coadsorption energies (in eV), and structural parameters (in angstroms) for the coadsorption systems involved in NH₂-assisted hydrazine decomposition on Rh(111).

System	E_{ads}	$d_{N\!-\!N}^{a}$	d_{N-Rh}^{b}	$d_{\mathrm{N-H}}^{}a}$
N_2H_4 (bridge) + NH_2 (bridge)	3.67	1.450	2.248, 2.248	1.027, 1.027, 1.030, 1.031
N_2H_3 (fcc) + NH_2 (bridge)	4.80	1.439	2.118, 2.152, 2.165	1.025, 1.027, 1.027
NHNH (hcp) + NH_2 (bridge)	4.41	1.393	2.082, 2.094, 2.123	1.027, 1.032
NNH_2 (fcc) + NH_2 (bridge)	6.01	1.436	2.056, 2.068, 2.126	1.026, 1.027
N_2H (bridge) + NH_2 (bridge)	4.58	1.254	1.963, 2.079	1.035
ami arai iariii i da ar	rr c b m	1 1	d N. CNITI I	C DI

^a The N-N and N-H bonds in the N_2H_x fragment. ^b The distance between the N atoms of N_2H_x and surface Rh atoms.

Table S2 Energy barriers E_a and reaction energies ΔE (in eV) for the elementary steps involved in intramolecular hydrazine decomposition on Rh(111) (2×2) slab.

Reactions	E_a	ΔE
$(a^*) N_2H_4 \rightarrow N_2H_3 + H$	0.75	-0.30
$(b^*) N_2H_3 \rightarrow NHNH + H$	1.07	0.63
$(c^*) N_2H_3 \rightarrow NNH_2 + H$	1.50	0.46
(d^*) NHNH \rightarrow N ₂ H + H	1.04	0.11
$(e^*) NNH_2 \rightarrow N_2H + H$	1.12	0.20
$(f^*) N_2 H \rightarrow N_2 + H$	0.99	-0.28
$(g^*) N_2H_4 \rightarrow 2NH_2$	0.46	-0.81
$(h^*) NH_2 \rightarrow NH + H$	1.53	0.24
$(i^*) NH \rightarrow N + H$	1.29	0.57

Table S3 Diffusion barrier (E_{diff}), reaction energy (ΔE) (in eV) for the diffusion of some species on Rh(111)- (2×3) slab.

Diffusion	E_{diff}	ΔE
N_2H_4 (top) $\rightarrow N_2H_4$ (bridge)	0.03	0.01
N_2H_4 (bridge) + NH_2 (bridge-1) $\rightarrow N_2H_4$ (bridge) + NH_2 (bridge-2)	0.39	0.04
N_2H_4 (top) + NH_2 (bridge-1) $\rightarrow N_2H_4$ (bridge) + NH_2 (bridge-2)	0.69	0.21