Supplementary Information for

Structural and spectroscopic characterization of potassium fluoroborohydrides

Richard H. Heyn,*^{*a*} Ivan Saldan,^{*b,#*} Magnus H. Sørby,^{*b*} Christoph Frommen,^{*b*} Bjørnar Arstad,^{*a*} Aud M. Bougza,^{*a*} Helmer Fjellvåg,^{*c*} and Bjørn C. Hauback^{*b*}

^a SINTEF Materials and Chemistry, P. O. Box 124 Blindern, 0314 Oslo, Norway. Fax: +47 7359 7043; Tel: +47 9824 3927; E-mail: rhh@sintef.no

^b Institute for Energy Technology (IFE), P. O. Box 40, 2027 Kjeller, Norway.

^c Department of Chemistry, University of Oslo, P. O. Box 1033 Blindern, 0315 Oslo, Norway.

[#]Current address: Department of Physical and Colloid Chemistry, Chemical Faculty, Ivan

Franko National University of Lviv,6 Kyryla and Mefodiya Str., UA-79005, Lviv, Ukraine

Experimental details

Ball milling. Commercial KBH₄ (\geq 98%, Sigma Aldrich) and KBF₄ (\geq 99.99%, Sigma Aldrich) powders were used to prepare mixtures in molar ratios 3:1 and 1:1. The mixtures were ground in a mortar and pestle for some minutes and after that milled in Spex 8000 M Mixer Mill for 10h. Stainless steel balls 10 mm in size with 40:1 ratio balls to powders were used. All handling and preparation of the mixtures took place in a glove box with continuously purified argon atmosphere where oxygen and moisture values were less than 1 ppm.

Powder X-ray diffraction. PXD was performed with Bruker AXS D8 Advance using Cu K α radiation ($\lambda_1 = 1.54056$ Å, $\lambda_2 = 1.54444$ Å). The samples were encapsulated airtight in 0.8 glass capillaries in the glove box. During the capillary preparation silicon powder ($\geq 99.999\%$; 1-5 micron; ABCR) was added to the sample as an internal standard. A LynxEyeTM strip-detector was used for data acquisition with step size of 0.02° in the 2 Θ ranges of 20-65° (sample 1) and 20-90° (sample 2) at ambient temperature. The PXD data were analyzed according to the Rietveld method using the FullProf Suite software package. A pseudo-Voigt function with a simple mixing parameter was used to describe the Bragg peak profiles. The backgrounds were interpolated between manually selected background points (21 points for the 3:1 sample and 14 points for the 1:1 sample). Corrections for instrumental zeropoint offset and sample offset was determined from the positions of the silicon peaks.

Solid state NMR experiments. The experiments were performed at 11.7 T on a Bruker Avance III spectrometer using a 4.0 mm double resonance MAS probehead at room temperature. The MAS rate was 13 kHz for all experiments.

The ¹H spectra were obtained using 100 scans with a 10 second recycle delay. The ¹¹B spectra were obtained using 100 scans, 1 second recycle delay, and 1 microsecond long pulses, and the ¹⁹F spectra were obtained using 100 scans, and 5 second recycle delay. The ¹¹B 3MQMAS experiment was carried out with a three pulse z-filtering sequence [1]. The spectra were acquired with 384 scans for each of the 200 experiments in the indirect dimension. The recycle delay was 1 s. ¹H-¹¹B CP, ¹⁹F-¹¹B cross polarization (CP) spectra were acquired with 4000 scan, a recycle delay of 5 seconds and Hartmann-Hahn contact times of 500, 1500 and 200 microseconds. The α parameter is likely much less than 1 due low rf-power levels used, the fast MAS rate and the likely low quadrupolar coupling strength of B in these samples.

The ¹H chemical shift is externally referred to TMS while pure KBH₄ and KBF₄ have been used for comparisons with synthesized materials.

All curve fittings were done using the MestReNova 8.1.1-11591 software with a mix of gaussian and loretzian shapes.

Thermogravimetric experiments (TG). TG data was obtained with a STA449 F1 Jupiter instrument from NETZSCH. Samples of about 3 mg were measured in Al_2O_3 sample pans covered with pierced lids made of the same material. The experiments were conducted under flowing argon gas (50 ml/min) and with a heating rate of 2 °C/min. The raw data was background corrected for sample holder effects by means of a correction file obtained under identical conditions.

Wet chemical synthesis. All operations were carried out in an Ar-filled glove box or with standard Schlenk techniques under Ar. All solvents were dried with either Na or CaH₂ and distilled. Potassium fluoride (Sigma-Aldrich, 0.43 g, 7.4 mmol) was ground to a powder with a mortar and pestle and placed in a 100 ml Schlenk flask. Dimethoxyethane (ca. 40 ml) was added via cannula and BH₃•SMe₂ (Sigma-Aldrich, 1.0 ml, 10.5 mmol) was added via syringe. The resulting white slurry was then refluxed for 15 h. After cooling, the resulting white precipitate was isolated by filtration, washed with Et₂O (2 x 20 ml), and dried under vacuum. Yield: 0.45 g. The solid state ¹¹B NMR spectrum showed two resonances consistent with BF₄⁻ and BH₄⁻ tetrahedra. The solid state ¹⁹F NMR spectrum showed several resonances; only that for KF (-133.0 ppm) and KBF₄ (-152.5 ppm) could be assigned. The PXRD data shows phases for KF, KBH₄, and KBF₄, in addition to reflections for other, unknown phases.

Figure 1S. Solid state ¹¹B NMR spectrum of 3.

Figure 2S. Solid state ¹⁹F NMR of **3**.

Figure 3S. PXRD of 3.

Figure 4S. Enlarged view of Figure 3 of the ¹¹B NMR spectra of KBH₄, KBF₄, **1**, and **2** (top to bottom).

Figure 5S. Enlarged view of Figure 6 of the 19 F NMR spectra for KBF₄, **1**, and **2** (top to bottom).

Figure 6S. ¹H NMR spectra for **1**, .**2**, and **3** (top to bottom).

Figure7S. Enlarged view of the ¹H NMR spectra of KBH₄, **1**, and **2** (top to bottom).

Footnotes

1. J. P. Amoureux, C. Fernandez, S. Steuernagel, *J. Magn. Res. Series A*, 1996, **123**, 116-118.