Supporting Information for

Isoindigo-Based Small Molecules for Solution-Processed Organic Photovoltaic Devices: Electron Donating Effect of Donor Group on Photo-Physical Properties and Device Performance

Walaa Elsawy^{1,2,7}, Chang-Lyoul Lee^{3,*}, Shinuk Cho⁴, Seung-Hwan Oh⁵, Seung-Hyeon Moon,⁶ Ahmed Elbarbary⁷ and Jae-Suk Lee^{1,2,*}

¹Department of Nanobio Materials and Electronics and School of Material Science and Engineering, ²Research Institute for Solar and Sustainable Energies (RISE), ³Advanced Photonics Research Institute (APRI), ⁶School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Republic of Korea

⁷ Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt

⁴Departments of Physics and EHSRC, University of Ulsan, Ulsan 680-749, Republic of Korea

⁵*Radiation Research Division for Industry & Environment, Korea Atomic Energy Research Institute (KAERI), 580-185, Republic of Korea*

Fig. S1 PL spectra of isoindigo donor-acceptor-donor (D-A-D) small molecules in solution state. The chloroform was used as solvent. The solution concentration was 10^{-5} mol.

Fig. S2 Thermo Gravimetric Analysis (TGA) curves of isoindigo donor-acceptor-donor (D-A-D) small molecules.

Fig. S3 (a) Current density versus voltage characteristics of ITO/PEDOT:PSS/ID2T:PC₇₀BM/TiO₂/Al organic photovoltaic devices with different donor and acceptor ratio without DIO. (b) Current density versus voltage characteristics of ITO/PEDOT:PSS/ID2T:PC₇₀BM(70:30)/TiO₂/Al organic photovoltaic devices with different DIO content.

Table S1 Photovoltaic performance of ITO/PEDOT:PSS/ID2T:PC₇₀BM/TiO₂/Al organic photovoltaic devices with different donor and acceptor ratio (without DIO) and DIO content. The ID2T and PC₇₀BM ratio was fixed with 70:30 in photovoltaic devices with different DIO content.

Donor : acceptor ratio	$J_{\rm sc}({\rm mA/cm}^2)$	$V_{\rm oc}({ m V})$	FF (%)	PCE (%)
50:50	4.42	0.92	29.1	1.19
60:40	6.12	0.93	35.4	2.04
70:30	7.0	0.93	36.3	2.30
80:20	4.86	0.88	34.8	1.49
DIO content (%)				
0.05	5.93	0.85	31.7	1.59
0.1	6.58	0.93	42.8	2.60
0.15	5.48	0.93	44.6	2.26
0.2	2.77	0.80	40.9	0.90

Fig. S4 (a) Current density versus voltage characteristics of ITO/PEDOT:PSS/IDHT: $PC_{70}BM$ (70:30)/TiO₂/Al and ITO/PEDOT:PSS/IDED:PC₇₀BM (70:30)/TiO₂/Al organic photovoltaic devices with 0.1% DIO.

Active layer	$\mu_{\rm h}({\rm cm}^2/({\rm V}\cdot{\rm s}))$	Ion/Ioff	$V_{t}(V)$
IDED	3.2×10^{-5}	4.5×10^{3}	-20
IDHT	1.1×10^{-3}	$5.7 imes 10^4$	-21
IDT	1.4×10^{-2}	1.3×10^{6}	-18
ID2T	3.6×10^{-2}	3.4×10^{6}	-16
ID3T	$9.7 imes 10^{-4}$	1.0×10^{5}	-26

Table S2 Field-effect charge transport properties of isoindigo donor-acceptor-donor (D-A-D) small molecules. V_{ds} is -60V.

Fig. S6 Transfer curves of OTFTs based on the isoindigo donor-acceptor-donor (D-A-D) small molecules:PC₇₀BM (70:30) film. (a) IDT (b) IDHT and IDED.

Table S3 Field-effect charge transport properties of isoindigo donor-acceptor-donor (D-A-D)small molecules: $PC_{70}BM$ (70:30). V_{ds} is ±60V.

Active layer	$\mu_{\rm e}({\rm cm}^2/({\rm V}\cdot{\rm s}))^{\rm a}$	$\mu_{\rm h}({\rm cm}^2/({\rm V}\cdot{\rm s}))^{\rm a}$	$\mu_{\rm e}({\rm cm}^2/({\rm V}\cdot{\rm s}))^{\rm b}$	$\mu_{\rm h}({\rm cm}^2/({\rm V}\cdot{\rm s}))^{\rm b}$
IDED:PC70BM	4.62×10^{-5}	2.09×10^{-5}	N/A ^c	N/A ^c
IDHT:PC70BM	5.19×10^{-5}	2.96×10^{-5}	N/A ^c	N/A ^c
IDT:PC70BM	6.15×10^{-3}	1.37×10^{-4}	7.80×10^{-3}	8.76×10^{-3}

^aElectron and hole mobility of photo-active layer without DIO, ^bElectron and hole mobility of active photo-layer with 0.1% DIO, ^cNot available, there was no additive effect on the IDED:PC₇₀BM and IDHT:PC₇₀BM films.

Fig. S7 ¹H and ¹³C NMR spectrum of 6, 6'-dihydrothieno[3,4-b][1,4]dioxin-2-yl-N,N'-(2-ethylhexyl)-isoindigo (IDED) in CDCl₃.

Fig. S8 ¹H and ¹³C NMR spectrum of 6,6'-dihexylthiophen-2-yl-N,N'-(2-ethylhexyl)isoindigo (IDHT) in CDCl₃.

Fig. S9 ¹H and ¹³C NMR of spectrum of 6, 6'-thiophen-2-yl-N,N'-(2-ethylhexyl)-isoindigo (IDT) in CDCl₃.

Fig. S10 ¹H and ¹³C NMR spectrum of 6, 6'-bithiophen-2-yl-N,N'-(2-ethylhexyl)-isoindigo (ID2T) in CDCl₃.

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics This journal is The Owner Societies 2013

Fig. S11 ¹H and ¹³C NMR spectrum of 6, 6'-terthiophen-2-yl-N,N'-(2-ethylhexyl)-isoindigo (ID3T) in CDCl₃.