Supplymentary Information for "**Photoresponse Enhancement by Mixing of an Alcohol-Soluble** C₆₀ **Derivative into a Ruthenium Complex Monolayer**

Kei-ichi Terada^{a§}, Makiko Oyama^a, Katsuhiko Kanaizuka^{b, c},

Masa-aki Haga^c, and Takao Ishida*^a

^aNanosystem Research Institute(NRI), National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564, Japan, *E-mail:<u>t-ishida@aist.go.jp</u>*

^bDepartment of Material and Biological Chemistry, Faculty of Science, Yamagata

University, 1-4-12 Kozirakawa-machi, Yamagata 990-8560, Japan.

^cDepartment of Applied Chemistry, Faculty of Science and Engineering,

Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan.

[§]Present address: *KST World Corp., Fukui, Japan.*

Figure S1 A cross-sectional TEM image of the Ru complex layer. The TEM image was taken at an electron acceleration energy of 300 keV using a Hitachi U-9000 electron microscope. The Ru complex layer was coated with a Pt and silica layer to reduce damage during the milling process. The thickness of the mixed layer was estimated to be 2.5 nm.

Figure S2 Cross-sectional TEM image of the mixed monolayer. The TEM image was also taken at an electron acceleration energy of 300 keV using a Hitachi U-9000 electron microscope. The Ru complex layer was coated with a silica layer to reduce damage during the milling process. The mixed layer appears amorphous in this image. Cf-C₆₀ and Ru complexes cannot be distinguished. The thickness of the mixed layer was estimated to be 4.7 nm

Figure S3 Cyclic voltammograms of (a) Cf-C₆₀ film cast on an ITO substrate and (b) Cf-C₆₀ in a liquid. The measurements were performed at 25 °C in aqueous 0.1 M Na₂SO₄ solution. The peak attributed to Cf-C₆₀ was observed at (a) -0.62 V and (b) -0.8V.

2.7 eV by using a previously published method.³⁹