Electronic Supplementary Information

for

Dual Fluorescence of Excited State Intra-molecular Proton Transfer of HBFO: Mechanistic Understanding, Substituent and Solvent Effects

Wenjing Yang and Xuebo Chen*

Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education Department of Chemistry, Beijing Normal University, Xin-wai-da-jie 19, Beijing 100875, People's Republic of China

Email: xuebochen@bnu.edu.cn

Section 1, Computational method for rate calculation.

Without consideration of rotational degrees of freedom, the standard expression* for the unimolecular rate constant (units s^{-1}) of an isolated molecule with total energy E

$$k(E) = \frac{N(E)}{2\pi\hbar N_0(E)}$$
(S1)

Within the separable approximation tunneling is accounted for by replacing N(E) in eq S1 by $N_{OM}(E)$

$$N_{QM}(E) = \sum_{n} P(E - \boldsymbol{\mathcal{E}}_{n}^{\neq})$$
(S2)

The expression for the unimolecular rate constant which include the effect of tunneling is

$$k(E) = \frac{\sum_{n} P(E - \varepsilon_{n}^{\neq})}{2\pi\hbar N_{0}'(E)}$$
(S3)

Where N(E) and $N_0(E)$ are the integral densities of states of the transition state and the reactant molecule. The expressions of them are as follows:

$$N(E) = \sum_{n} h(E - \mathcal{E}_{n}^{\neq})$$
 (S4)

$$N_0(E) = \sum_n h(E - \mathcal{E}_n)$$
(S5)

Where h(x) is the usual step-function

$$h(x) = \begin{cases} 0, & x < 0\\ 1, & x > 0 \end{cases}$$
(S6)

And ε_n^{\neq} and ε_n are the vibrational energy levels of the transition state and the reactant molecule. It is generally to assume the vibrational energy levels are almost given by an oscillator approximation, so the expression can be obtained as follows:

$$\mathcal{E}_n = \sum_{i=1}^{s} \hbar \omega_i \left(n_i + \frac{1}{2} \right) \tag{S7}$$

$$\mathcal{E}_{n}^{\neq} = V_{0} + \sum_{i=1}^{s-1} \hbar \omega_{i}^{\neq} (n_{i} + \frac{1}{2})$$
 (S8)

Where s is the number of vibrational degrees of freedom of the stable molecule, $\{\omega_i\}$ and $\{\omega_i^{\neq}\}$ are the normal mode vibration frequencies for the transition state and for the reactant molecule, respectively. And V_0 is the energy of the saddle point of the PES relative to the minimum PES of the reactant molecule, the total energy E is based on the relative energy compares to the minimum of the PES.

Next the large sums of the densities of states would be disposed approximately. So the expressions are shown below:

$$N_{0}(E) = \frac{E^{s}}{s! \sum_{i=1}^{s} (\hbar \omega_{i})}$$
(S9)

$$N(E) = \frac{(E - V_0)^{s-1}}{(s-1)! \sum_{i=1}^{s-1} (\hbar \omega_i^{\neq})}$$
(S10)

On the basis of above approximates, the expression of the rate constant can be expressed as follow.

$$k(E) = A(\frac{E - V_0}{E})^{s-1}$$
(S11)

where A is a frequency factor (units s^{-1}).

$$A = \begin{bmatrix} \prod_{i=1}^{s} \omega_i \\ 2\pi \begin{bmatrix} s^{-1} \\ \prod_{i=1}^{s-1} \omega_i^{\neq} \end{bmatrix}$$
(S12)

The unit conversion from cm^{-1} for normal mode vibration frequencies and frequency factor A to rate unit s⁻¹ is taken by using the following formula

$$c = \frac{V}{\tilde{V}}$$
(S13)

Where v is the unimolecular vibration frequencies, \tilde{v} is the wave number and c is the velocity of light.

Therefore, the expression of frequency factor can be written as follows:

$$A = \frac{\left[\prod_{i=1}^{s} \omega_{i}\right] \times (3 \times 10^{10})}{2\pi \left[\prod_{i=1}^{s-1} \omega_{i}^{\neq}\right]}$$
(S14)

So finally the expression of unimolecular rate constant can be expressed as:

$$k(E) = \frac{\left[\prod_{i=1}^{s} \omega_{i}\right] \times (3 \times 10^{10})}{2\pi \left[\prod_{i=1}^{s-1} \omega_{i}^{\neq}\right]} \left(\frac{E - V_{0}}{E}\right)^{s-1}$$
(S15)

Section 2, Test calculations for the choice of most appropriate active space of HBFO at the CASSCF/CASPT2 level of theory. Test 1:

]	The vertical excitation energy: 3.31 eV (experimental value:3.03 eV)					
]	The diagram of orbitals in active space cas(10,9)					
•				Ļ.		
		Ç		Ų.		
		Ç		*		
	Occupation nu	mbers of these	orbitals			
	Occupation nu	mbers of these	orbitals 3	4	5	
1	Occupation nu 1 0.199988D+01	mbers of these	orbitals 3	4	5	
1 2	Occupation nu 1 0.199988D+01 0.321563D-04	mbers of these 2 0.199989D+01	orbitals 3	4	5	
1 2 3	Occupation nut 1 0.199988D+01 0.321563D-04 -0.973261D-07	mbers of these 2 0.199989D+01 0.110158D-05	orbitals 3 0.198126D+01	4	5	
1 2 3 4	Occupation nut 1 0.199988D+01 0.321563D-04 -0.973261D-07 -0.228208D-04	mbers of these 2 0.199989D+01 0.110158D-05 0.110198D-05	orbitals 3 0.198126D+01 0.196043D-05	4 0.195996D+	5	
1 2 3 4 5	Occupation nut 1 0.199988D+01 0.321563D-04 -0.973261D-07 -0.228208D-04 0.103917D-04	2 0.199989D+01 0.110158D-05 0.110198D-05 0.114739D-05	orbitals 3 0.198126D+01 0.196043D-05 0.713624D-06 -0.2 0.2	4 0.195996D+ 233188D-05	5 01 0.193523D+01	
1 2 3 4 5 6	Occupation num 1 0.199988D+01 0.321563D-04 -0.973261D-07 -0.228208D-04 0.103917D-04 0.582563D-04	mbers of these 2 0.199989D+01 0.110158D-05 0.110198D-05 0.114739D-05 0.101117D-04	orbitals 3 0.198126D+01 0.196043D-05 0.713624D-06 -0.2 0.300263D-06	4 0.195996D+ 233188D-05 0.333791D-02	5 01 0.193523D+01 3 -0.136028D-03	
1 2 3 4 5 6 7	Occupation num 1 0.199988D+01 0.321563D-04 -0.973261D-07 -0.228208D-04 0.103917D-04 0.582563D-04 0.540031D-07	2 0.199989D+01 0.110158D-05 0.110198D-05 0.114739D-05 0.101117D-04 0.309784D-04	orbitals 3 0.198126D+01 0.196043D-05 0.713624D-06 -0.2 0.300263D-06 0.154174D-04 0.154174D-04	4 0.195996D+ 233188D-05 0.333791D-02 0.581731D-02	5 01 0.193523D+01 3 -0.136028D-03 6 -0.314053D-06	
1 2 3 4 5 6 7 8	Occupation num 1 0.199988D+01 0.321563D-04 -0.973261D-07 -0.228208D-04 0.103917D-04 0.582563D-04 0.540031D-07 0.379016D-04 -	2 0.199989D+01 0.110158D-05 0.110198D-05 0.114739D-05 0.101117D-04 0.309784D-04 0.443733D-04	orbitals 3 0.198126D+01 0.196043D-05 0.713624D-06 -0.2 0.300263D-06 0.154174D-04 0.399573D-06 -0.2	4 0.195996D+ 233188D-05 0.333791D-02 0.581731D-02 205618D-03	5 01 0.193523D+01 3 -0.136028D-03 6 -0.314053D-06 0.741175D-04	
1 2 3 4 5 6 7 8 9	I 0.199988D+01 0.321563D-04 -0.973261D-07 -0.228208D-04 0.103917D-04 0.582563D-04 0.540031D-07 0.379016D-04 - 0.513347D-05	2 0.199989D+01 0.110158D-05 0.110198D-05 0.114739D-05 0.101117D-04 0.309784D-04 0.443733D-04 0.270888D-05	orbitals 3 0.198126D+01 0.196043D-05 0.713624D-06 -0.2 0.300263D-06 0.154174D-04 0.399573D-06 -0.2 -0.684411D-05 -0.	4 0.195996D+ 233188D-05 0.333791D-02 0.581731D-02 205618D-03 163345D-02	5 01 0.193523D+01 3 -0.136028D-03 6 -0.314053D-06 0.741175D-04 0.487065D-03	
1 2 3 4 5 6 7 8 9	I 0.199988D+01 0.321563D-04 -0.973261D-07 -0.228208D-04 0.103917D-04 0.582563D-04 0.540031D-07 0.379016D-04 - 0 0.513347D-05 6	2 0.199989D+01 0.110158D-05 0.110198D-05 0.114739D-05 0.101117D-04 0.309784D-04 0.443733D-04 0.270888D-05 7	orbitals 3 0.198126D+01 0.196043D-05 0.713624D-06 -0.1 0.300263D-06 0.154174D-04 0.399573D-06 -0.1 0.684411D-05 -0. 8	4 0.195996D+ 233188D-05 0.333791D-02 0.581731D-02 205618D-03 163345D-02 9	5 01 0.193523D+01 3 -0.136028D-03 5 -0.314053D-06 0.741175D-04 0.487065D-03	
1 2 3 4 5 6 7 8 9 6	I 0.199988D+01 0.321563D-04 -0.973261D-07 -0.228208D-04 0.103917D-04 0.582563D-04 0.540031D-07 0.379016D-04 - 0.513347D-05 6 0.638849D-01	2 0.199989D+01 0.110158D-05 0.110198D-05 0.114739D-05 0.101117D-04 0.309784D-04 0.443733D-04 0.270888D-05 7	3 0.198126D+01 0.196043D-05 0.713624D-06 -0.3 0.300263D-06 0.154174D-04 0.399573D-06 -0.3 0.684411D-05 -0. 8	4 0.195996D+ 233188D-05 0.333791D-02 0.581731D-00 205618D-03 163345D-02 9	5 01 0.193523D+01 3 -0.136028D-03 6 -0.314053D-06 0.741175D-04 0.487065D-03	
1 2 3 4 5 6 7 8 9 6 7	I 0.199988D+01 0.321563D-04 -0.973261D-07 -0.228208D-04 0.103917D-04 0.582563D-04 0.540031D-07 0.379016D-04 - 0.513347D-05 6 0.638849D-01 0.596630D-07	2 0.199989D+01 0.110158D-05 0.110198D-05 0.110198D-05 0.101117D-04 0.309784D-04 0.443733D-04 0.270888D-05 7 0.187869D-01	3 0.198126D+01 0.196043D-05 0.713624D-06 -0.1 0.300263D-06 0.154174D-04 0.399573D-06 -0.1 0.684411D-05 -0. 8	4 0.195996D+ 233188D-05 0.333791D-02 0.581731D-02 205618D-03 163345D-02 9	5 01 0.193523D+01 3 -0.136028D-03 6 -0.314053D-06 0.741175D-04 0.487065D-03	
1 2 3 4 5 6 7 8 9 6 7 8	I 0.199988D+01 0.321563D-04 -0.973261D-07 -0.228208D-04 0.103917D-04 0.582563D-04 0.540031D-07 0.379016D-04 - 0.513347D-05 6 0.638849D-01 0.596630D-07 0.991337D-05	2 0.199989D+01 0.110158D-05 0.110198D-05 0.114739D-05 0.101117D-04 0.309784D-04 0.443733D-04 0.270888D-05 7 0.187869D-01 0.551403D-06	3 0.198126D+01 0.196043D-05 0.713624D-06 -0.2 0.300263D-06 0.154174D-04 0.399573D-06 -0.2 0.684411D-05 -0. 8 0.345485D-01	4 0.195996D+ 233188D-05 0.333791D-00 0.581731D-00 205618D-03 163345D-02 9	5 01 0.193523D+01 3 -0.136028D-03 6 -0.314053D-06 0.741175D-04 0.487065D-03	

Section 3, Figures Figure S1. The diagram of selected orbitals in active space for HBFO.

Section 4, Tables

Table S1 The vertical excitation energies (E_{\perp} , eV), wavelengths (λ_{cal} , nm), experimental wavelength (λ_{exp} , nm), oscillator strengths (f), dipole moments (D.M., Debye) and the character of singly occupied orbitals in the $S_{CT}(^{1}\pi\pi*)$ state for the Franck-Condon structures of HBFO at the CASPT2//CAS(10,9)/6-31G* and for *meta*-CF₃-HBFO, *meta*-NH₂-HBFO, *para*-CF₃-HBFO, *para*-NH₂-HBFO at the CASPT2//CAS(12,10)/6-31G* level of theory

Fluorescers	Singly occupied orbitals	D.M.	f	E_{\perp}	λ_{cal}	λ_{exp}
HBFO		6.21	2.51E-02	3.13	395	409
<i>meta</i> -CF ₃ -HBFO	900 : : :	5.55	1.53E-01	3.31	375	
<i>meta</i> -NH ₂ -HBFO	Sec. 28	6.20	2.58E-01	3.43	361	
para-CF ₃ -HBFO	900- 222	4.56	1.55E-01	3.36	368	
para-NH ₂ -HBFO	ý 🔆 🔅	6.23	2.59E-01	3.47	357	

Table S2 The absolute energy (A.E.) in Hartree for the optimized structures of enol (E)/keto(K) forms and maxima of five fluorescers, HBFO, *meta*-CF₃-HBFO, *meta*-NH₂-HBFO, *para*-CF₃-HBFO, *para*-NH₂-HBFO in gas phase, cyclohexane and acetonitrile solvents along ESIPT pathways in the $S_{CT}(^{1}\pi\pi*)$ state obtained at CASPT2//CASSCF/6-31+G* or CASPT2//CASSCF/PCM/6-31+G*level of theory

fluorescers	Solvents	critical points	A.E.
	Gas	S _{CT} -E	-801.7735
		S _{CT} -1.26-maximum	-801.7570
		S _{CT} -K	-801.7692
		S _{CT} -E	-801.7797
HBFO	Cyclohexane	S_{CT} -1.26-maximum	-801.7627
		S _{CT} -K	-801.7760
		S _{CT} -E	-801.7907
	Acetonitrile	S_{CT} -1.26-maximum	-801.7744
		S _{CT} -K	-801.7873

		S _{CT} -E	-1138.0648
	Gas	S _{CT} -1.20-maximum	-1138.0575
		S _{CT} -K	-1138.0666
		S _{CT} -E	-1137.9960
<i>meta</i> -CF ₃	Cyclohexane	S _{CT} -1.20-maximum	-1137.9882
-HBFU		S _{CT} -K	-1137.9918
		S _{CT} -E	-1137.9960
	Acetonitrile	S _{CT} -1.20-maximum	-1137.9785
		S _{CT} -K	-1137.9903
		S _{CT} -E	-856.9698
	Gas	S _{CT} -1.28-maximum	-856.9464
		S _{CT} -K	-856.9596
		S _{CT} -E	-856.9848
$meta-NH_2$	Cyclohexane	S _{CT} -1.28-maximum	-856.9683
-HBFU		S _{CT} -K	-856.9737
		S _{CT} -E	-857.0001
	Acetonitrile	S_{CT} -1.28-maximum	-856.9754
		S _{CT} -K	-856.9932
		S _{CT} -E	-1137.9748
	Gas	S _{CT} -1.22-maximum	-1137.9616
		S _{CT} -K	-1137.9746
nava CE		S _{CT} -E	-1137.9830
$para-Cr_3$	Cyclohexane	S_{CT} -1.22-maximum	-1137.9704
-ndfU		S _{CT} -K	-1137.9766
		S _{CT} -E	-1137.9920
	Acetonitrile	S_{CT} -1.22-maximum	-1137.9746
		S _{CT} -K	-1137.9882
		S _{CT} -E	-856.9847
	Gas	S_{CT} -1.28-maximum	-856.9671
		S _{CT} -K	-856.9768
para NH.		S _{CT} -E	-856.9946
HBEO	Cyclohexane	S_{CT} -1.28-maximum	-856.9795
IIDIO		S _{CT} -K	-856.9848
		S_{CT} -E	-857.0106
	Acetonitrile	S_{CT} -1.28-maximum	-856.9923
		S _{CT} -K	-857.0037

Table S3 The comparisons between transition states (maxima) structure and the absolute energy (A.E.) in Hartree at CASPT2 level for HBFO, *meta*-CF₃-HBFO, *meta*-NH₂-HBFO in the S_{CT}($^{1}\pi\pi*$) state are obtained by constraint geometry method and traditional TS optimizations, respectively.

Table S4 (a)The fragment of charge translocation from the moieties of naphthalene (Q1) to carbonyl group (Q2) and benzene (Q3) (b)The sum of Mulliken charge distribution of the different fragment upon $S_0 \rightarrow S_{CT}(^1\pi\pi^*)$ FC excitation of HBFO.

Table S5 The test computations of single energy calculation at the CASPT2/6-31+G* level of theory along the selective stationary points that are adjacent to maxima of HBFO, *meta*-CF₃-HBFO and *meta*-NH₂-HBFO to confirm the reliability of the maxima searching.

		A.E.	R.E.
	S _{CT} -1.17	-801.7625	3.05
HBFO	S _{CT} -1.26(Barrier)	-801.7570	3.21
	S _{CT} -1.36	-801.7577	3.18
	S _{CT} -1.17	-1138.0639	2.49
<i>meta</i> -CF ₃ -HBFO	S _{CT} -1.20(Barrier)	-1138.0575	2.66
	S _{CT} -1.26	-1138.0640	2.48
	S _{CT} -1.23	-856.9515	3.27
<i>meta</i> -NH ₂ -HBFO	S _{CT} -1.28(Barrier)	-856.9464	3.49
	S _{CT} -1.33	-856.9603	3.11

Section 5-1, Cartesian coordinates of the optimized structures for HBFO along the ESIPT reaction pathway in $S_{CT}(^{1}\pi\pi^{*})$ state at the CAS(10e/9o)/6-31G* level of theory. $S_{CT}(^{1}\pi\pi^{*})-E$

S _{CT} ($\pi\pi^{*}$)-E		
8	-1.644070000	-2.625807000	-0.004356000
8	-4.211458000	-1.404652000	0.004905000
6	-1.252869000	-1.449187000	0.004568000
6	0.069292000	-0.895611000	0.001163000
6	1.313285000	-1.497418000	-0.002803000
6	2.479491000	-0.693948000	-0.001244000
6	3.775334000	-1.283186000	-0.004259000
6	4.892712000	-0.515811000	-0.002252000
6	4.808734000	0.908897000	0.002890000
6	3.601873000	1.514281000	0.005474000
6	2.393648000	0.745916000	0.003656000
6	1.146785000	1.366072000	0.005769000
6	-0.013889000	0.581335000	0.004031000
6	-1.370507000	0.950634000	0.001738000
6	-2.039929000	2.189259000	-0.001158000
6	-3.406966000	2.162073000	-0.005070000
6	-4.156878000	0.954347000	-0.006424000
6	-3.529383000	-0.260259000	-0.001937000
6	-2.118493000	-0.275463000	0.001077000
1	-3.558766000	-2.132211000	0.016147000
1	1.392104000	-2.566766000	-0.005444000
1	3.851213000	-2.356107000	-0.008045000
1	5.862236000	-0.984089000	-0.004345000
1	5.712337000	1.490270000	0.004428000
1	3.524806000	2.587717000	0.009049000
1	1.078735000	2.441849000	0.007539000
1	-1.502397000	3.118492000	-0.001242000
1	-3.951868000	3.088037000	-0.007479000
1	-5.231216000	0.982241000	-0.007971000
S _{CT} (¹	$\pi\pi^*$)-1.26(maximum)	
8	-1.765855000	-2.527538000	-0.002608000
8	-3.974479000	-1.548442000	0.004922000
6	-1.253999000	-1.356152000	-0.005186000
6	0.051971000	-0.864836000	-0.006118000
6	1.307138000	-1.483175000	-0.002079000
6	2.474246000	-0.695499000	-0.000169000
6	3.779336000	-1.297811000	0.004914000
6	4.893802000	-0.542232000	0.007134000
6	4.813929000	0.892424000	0.004466000

6	3.619820000	1.510070000	0.000159000
6	2.394463000	0.752229000	-0.002239000
6	1.153016000	1.385372000	-0.005662000
6	-0.029556000	0.614545000	-0.007712000
6	-1.393738000	1.012809000	-0.006422000
6	-2.119315000	2.207014000	-0.001008000
6	-3.498415000	2.087846000	0.006345000
6	-4.200944000	0.866937000	0.008687000
6	-3.512791000	-0.349899000	0.003053000
6	-2.110758000	-0.210878000	-0.005330000
1	-2.938340000	-2.265383000	0.001274000
1	1.375939000	-2.552320000	-0.000635000
1	3.845913000	-2.371016000	0.006945000
1	5.861319000	-1.012173000	0.011164000
1	5.721409000	1.467731000	0.006099000
1	3.559459000	2.583997000	-0.001915000
1	1.101280000	2.460405000	-0.006648000
1	-1.652116000	3.173488000	-0.002252000
1	-4.083576000	2.990246000	0.010525000
1	-5.276508000	0.872638000	0.015074000
S _C	$T(\pi\pi^*)-K$		
8	1.574508000	2.655254000	0.002846000
8	4.158244000	1.452929000	-0.000164000
6	1.235305000	1.388279000	-0.000540000
6	-0.111746000	0.865428000	-0.002141000
6	-1.325520000	1.464762000	-0.002011000
6	2 502611000		
1	-2.303011000	0.655434000	-0.000468000
6	-3.800542000	0.655434000 1.243923000	-0.000468000 0.000385000
6 6	-3.800542000 -4.917035000	0.655434000 1.243923000 0.476278000	-0.000468000 0.000385000 0.001386000
6 6 6	-3.800542000 -4.917035000 -4.810969000	0.655434000 1.243923000 0.476278000 -0.941686000	-0.000468000 0.000385000 0.001386000 0.001758000
6 6 6	-2.303011000 -3.800542000 -4.917035000 -4.810969000 -3.577511000	0.655434000 1.243923000 0.476278000 -0.941686000 -1.533813000	-0.000468000 0.000385000 0.001386000 0.001758000 0.001033000
6 6 6 6	-2.303011000 -3.800542000 -4.917035000 -4.810969000 -3.577511000 -2.391505000	0.655434000 1.243923000 0.476278000 -0.941686000 -1.533813000 -0.743845000	-0.000468000 0.000385000 0.001386000 0.001758000 0.001033000 -0.000016000
6 6 6 6 6	-2.303011000 -3.800542000 -4.917035000 -4.810969000 -3.577511000 -2.391505000 -1.094253000	0.655434000 1.243923000 0.476278000 -0.941686000 -1.533813000 -0.743845000 -1.350864000	-0.000468000 0.000385000 0.001386000 0.001758000 0.001033000 -0.000016000 -0.000350000
6 6 6 6 6 6	$\begin{array}{r} -2.303011000 \\ -3.800542000 \\ -4.917035000 \\ -4.810969000 \\ -3.577511000 \\ -2.391505000 \\ -1.094253000 \\ 0.002506000 \end{array}$	0.655434000 1.243923000 0.476278000 -0.941686000 -1.533813000 -0.743845000 -1.350864000 -0.566104000	-0.000468000 0.000385000 0.001386000 0.001758000 0.001033000 -0.000016000 -0.000350000 -0.001406000
6 6 6 6 6 6 6	$\begin{array}{c} -2.303011000 \\ -3.800542000 \\ -4.917035000 \\ -4.810969000 \\ -3.577511000 \\ -2.391505000 \\ -1.094253000 \\ 0.002506000 \\ 1.450277000 \end{array}$	0.655434000 1.243923000 0.476278000 -0.941686000 -1.533813000 -0.743845000 -1.350864000 -0.566104000 -0.898936000	-0.000468000 0.000385000 0.001386000 0.001758000 0.001033000 -0.000016000 -0.000350000 -0.001406000 -0.001410000
6 6 6 6 6 6 6 6	$\begin{array}{c} -2.303011000\\ -3.800542000\\ -4.917035000\\ -4.810969000\\ -3.577511000\\ -2.391505000\\ -1.094253000\\ 0.002506000\\ 1.450277000\\ 2.114097000\end{array}$	0.655434000 1.243923000 0.476278000 -0.941686000 -1.533813000 -0.743845000 -1.350864000 -0.566104000 -0.898936000 -2.194891000	-0.000468000 0.000385000 0.001386000 0.001758000 0.001033000 -0.00016000 -0.000350000 -0.001406000 -0.001410000 -0.000673000
6 6 6 6 6 6 6 6	$\begin{array}{c} -2.303011000\\ -3.800542000\\ -4.917035000\\ -4.810969000\\ -3.577511000\\ -2.391505000\\ -1.094253000\\ 0.002506000\\ 1.450277000\\ 2.114097000\\ 3.455024000\end{array}$	0.655434000 1.243923000 0.476278000 -0.941686000 -1.533813000 -0.743845000 -1.350864000 -0.566104000 -0.898936000 -2.194891000 -2.175259000	-0.000468000 0.000385000 0.001386000 0.001758000 0.001033000 -0.000016000 -0.000350000 -0.001406000 -0.001410000 -0.000673000 0.000408000
6 6 6 6 6 6 6 6 6 6 6 6 6	$\begin{array}{c} -2.303011000\\ -3.800542000\\ -4.917035000\\ -4.810969000\\ -3.577511000\\ -2.391505000\\ -1.094253000\\ 0.002506000\\ 1.450277000\\ 2.114097000\\ 3.455024000\\ 4.218038000\end{array}$	0.655434000 1.243923000 0.476278000 -0.941686000 -1.533813000 -0.743845000 -1.350864000 -0.566104000 -0.898936000 -2.194891000 -2.175259000 -0.930389000	-0.000468000 0.000385000 0.001386000 0.001758000 0.001033000 -0.00016000 -0.000350000 -0.001406000 -0.001410000 -0.000673000 0.000408000 0.001375000
6 6 6 6 6 6 6 6 6 6 6 6 6 6	$\begin{array}{c} -2.303011000\\ -3.800542000\\ -4.917035000\\ -4.810969000\\ -3.577511000\\ -2.391505000\\ -1.094253000\\ 0.002506000\\ 1.450277000\\ 2.114097000\\ 3.455024000\\ 4.218038000\\ 3.590008000\end{array}$	0.655434000 1.243923000 0.476278000 -0.941686000 -1.533813000 -0.743845000 -1.350864000 -0.566104000 -0.898936000 -2.194891000 -2.175259000 -0.930389000 0.355220000	-0.000468000 0.000385000 0.001386000 0.001758000 0.001033000 -0.000016000 -0.000350000 -0.001406000 -0.001410000 -0.000673000 0.000408000 0.001375000 0.001006000
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	$\begin{array}{c} -2.303011000\\ -3.800542000\\ -4.917035000\\ -4.810969000\\ -3.577511000\\ -2.391505000\\ -1.094253000\\ 0.002506000\\ 1.450277000\\ 2.114097000\\ 3.455024000\\ 4.218038000\\ 3.590008000\\ 2.166074000\end{array}$	0.655434000 1.243923000 0.476278000 -0.941686000 -1.533813000 -0.743845000 -1.350864000 -0.566104000 -0.898936000 -2.194891000 -2.175259000 -0.930389000 0.355220000 0.274792000	-0.000468000 0.000385000 0.001386000 0.001758000 0.001033000 -0.00016000 -0.000350000 -0.001406000 -0.001410000 -0.001410000 0.000408000 0.001375000 0.001006000 -0.001374000
6 6 6 6 6 6 6 6 6 6 6 6 1	$\begin{array}{c} -2.303011000\\ -3.800542000\\ -4.917035000\\ -4.810969000\\ -3.577511000\\ -2.391505000\\ -1.094253000\\ 0.002506000\\ 1.450277000\\ 2.114097000\\ 3.455024000\\ 4.218038000\\ 3.590008000\\ 2.166074000\\ 2.554324000\end{array}$	0.655434000 1.243923000 0.476278000 -0.941686000 -1.533813000 -0.743845000 -0.566104000 -0.566104000 -0.898936000 -2.194891000 -2.175259000 -0.930389000 0.355220000 0.274792000 2.698431000	-0.000468000 0.000385000 0.001386000 0.001758000 0.001033000 -0.00016000 -0.001406000 -0.001410000 -0.000673000 0.001375000 0.001374000 0.005625000
6 6 6 6 6 6 6 6 6 6 6 6 6 1 1	$\begin{array}{c} -2.303011000\\ -3.800542000\\ -4.917035000\\ -4.810969000\\ -3.577511000\\ -2.391505000\\ -1.094253000\\ 0.002506000\\ 1.450277000\\ 2.114097000\\ 3.455024000\\ 4.218038000\\ 3.590008000\\ 2.166074000\\ 2.554324000\\ -1.414873000\end{array}$	0.655434000 1.243923000 0.476278000 -0.941686000 -1.533813000 -0.743845000 -1.350864000 -0.566104000 -0.898936000 -2.194891000 -2.175259000 -0.930389000 0.355220000 0.274792000 2.698431000 2.535311000	-0.000468000 0.000385000 0.001386000 0.001758000 0.001033000 -0.00016000 -0.001406000 -0.001406000 -0.001410000 -0.001410000 0.001375000 0.001375000 0.001374000 0.005625000 -0.001569000

1	-5.888601000	0.936549000	0.001929000
1	-5.701023000	-1.543971000	0.002710000
1	-3.491149000	-2.605993000	0.001332000
1	-1.023086000	-2.425233000	-0.000052000
1	1.552677000	-3.108366000	-0.001672000
1	4.006449000	-3.099534000	0.000733000
1	5.292132000	-0.964825000	0.003250000

Section 5-2, Cartesian coordinates of the optimized structures for *meta*-CF₃-HBFO along ESIPT reaction pathway in $S_{CT}(^{1}\pi\pi^{*})$ state at the CAS(12e/10o)/6-31G* level of theory.

S _{CT} (*	$\pi\pi^*$)- E		
8	-0.415401000	3.437656000	-0.017403000
8	2.374462000	3.175858000	-0.001046000
6	-0.380972000	2.204527000	-0.005196000
6	-1.455560000	1.239770000	0.004733000
6	-2.821671000	1.393512000	0.006556000
6	-3.658540000	0.240774000	0.006372000
6	-5.068987000	0.363192000	0.016243000
6	-5.868836000	-0.737805000	0.012811000
6	-5.313586000	-2.047943000	-0.001741000
6	-3.971640000	-2.211410000	-0.010286000
6	-3.094030000	-1.080400000	-0.004761000
6	-1.710175000	-1.247189000	-0.006853000
6	-0.878873000	-0.113714000	-0.004104000
6	0.525070000	0.003954000	-0.004110000
6	1.574771000	-0.944058000	-0.021847000
6	2.869857000	-0.456593000	-0.041512000
6	3.147744000	0.942216000	-0.035177000
6	2.131390000	1.866686000	-0.013242000
6	0.811368000	1.396123000	-0.003948000
1	1.507156000	3.628292000	0.027278000
1	-3.254783000	2.374400000	0.011910000
1	-5.499853000	1.348324000	0.025742000
1	-6.938725000	-0.621121000	0.019284000
1	-5.967906000	-2.900253000	-0.004033000
1	-3.540164000	-3.197174000	-0.019498000
1	-1.286870000	-2.238080000	-0.015063000
1	1.384836000	-2.000558000	-0.025384000
1	4.166378000	1.284707000	-0.048725000
6	4.017983000	-1.420818000	0.003992000
9	3.732530000	-2.553482000	-0.622684000
9	5.106652000	-0.922675000	-0.556597000
9	4.341682000	-1.746553000	1.248015000

$S_{CT}(^{1}\tau)$	tπ*)-1.20(ESIPT)		
8	-0.229863000	3.374445000	0.006864000
8	2.146353000	3.162723000	-0.000203000
6	-0.347690000	2.116277000	0.006183000
6	-1.451850000	1.211274000	0.006452000
6	-2.816905000	1.388106000	0.007725000
6	-3.672354000	0.251208000	0.004048000
6	-5.080298000	0.399563000	0.007053000
6	-5.900239000	-0.686524000	-0.001330000
6	-5.368564000	-2.004958000	-0.011726000
6	-4.028695000	-2.192809000	-0.013480000
6	-3.132079000	-1.079385000	-0.007751000
6	-1.748187000	-1.275227000	-0.008917000
6	-0.893061000	-0.168695000	-0.003763000
6	0.518810000	-0.085600000	-0.000607000
6	1.602359000	-1.002829000	-0.008534000
6	2.873739000	-0.456081000	-0.017252000
6	3.131364000	0.952746000	-0.014146000
6	2.086277000	1.858639000	-0.001766000
6	0.806125000	1.292879000	0.002051000
1	0.966894000	3.462527000	0.003231000
1	-3.235158000	2.374446000	0.013402000
1	-5.492774000	1.392415000	0.014429000
1	-6.967738000	-0.550279000	-0.000094000
1	-6.037658000	-2.845648000	-0.017894000
1	-3.615517000	-3.186253000	-0.020771000
1	-1.347474000	-2.275601000	-0.014725000
1	1.458756000	-2.065387000	-0.011657000
1	4.148298000	1.304248000	-0.025422000
6	4.072049000	-1.360731000	-0.001674000
9	3.742983000	-2.632023000	-0.175084000
9	4.934917000	-1.045850000	-0.954261000
9	4.727717000	-1.282959000	1.146750000
$S_{CT}(^{1}\tau)$	<i>τ</i> π*)- <i>Κ</i>		
8	0.503703000	3.420911000	0.023617000
8	-2.307921000	3.172664000	0.023426000
6	0.405861000	2.122851000	-0.004065000
6	1.477912000	1.193509000	-0.005896000
6	2.835942000	1.353934000	-0.010232000
6	3.672542000	0.207306000	-0.008384000
6	5.095733000	0.335063000	-0.009422000
6	5.899082000	-0.776863000	-0.003261000
6	5.320225000	-2.071503000	0.002338000

6	3.953505000	-2.216717000	0.006371000
6	3.101164000	-1.078284000	0.005226000
6	1.673830000	-1.224638000	0.007254000
6	0.895190000	-0.125593000	0.001365000
6	-0.572482000	0.048418000	-0.004491000
6	-1.656917000	-0.909898000	0.006376000
6	-2.924295000	-0.408799000	-0.014584000
6	-3.206060000	0.979105000	-0.017260000
6	-2.161544000	1.942856000	-0.003376000
6	-0.837775000	1.383436000	-0.007808000
1	-0.406467000	3.787456000	0.006470000
1	3.276130000	2.334495000	-0.015178000
1	5.528788000	1.319345000	-0.014323000
1	6.968495000	-0.669487000	-0.004383000
1	5.953556000	-2.939562000	0.004536000
1	3.513661000	-3.197993000	0.010027000
1	1.255103000	-2.216256000	0.008241000
1	-1.470922000	-1.966960000	0.013399000
1	-4.217634000	1.332521000	-0.029067000
6	-4.064230000	-1.399190000	0.005434000
9	-4.001775000	-2.182455000	1.071551000
9	-5.245093000	-0.811763000	0.017702000
9	-4.029609000	-2.194691000	-1.053038000

Section 5-3, Cartesian coordinates of the optimized structures for *meta*-NH₂-HBFO along ESIPT reaction pathway in $S_{CT}(^{1}\pi\pi^{*})$ state at the CAS(12e/10o)/6-31G* level of theory. $S_{CT}(^{1}\pi\pi^{*})$ -E

SCI()	(<i>n</i>)- <i>L</i>		
8	1.009474000	2.952298000	0.011678000
8	3.728616000	2.088265000	-0.004045000
6	0.790206000	1.738397000	0.006667000
6	-0.439280000	1.007767000	0.003606000
6	-1.749195000	1.475298000	0.002990000
6	-2.805145000	0.571413000	0.001793000
6	-4.167195000	1.023967000	0.000399000
6	-5.195214000	0.150010000	-0.002950000
6	-4.961176000	-1.262117000	-0.002681000
6	-3.699159000	-1.737544000	0.000194000
6	-2.572644000	-0.852819000	0.000281000
6	-1.269354000	-1.338800000	0.001193000
6	-0.192097000	-0.435333000	-0.000984000
6	1.189507000	-0.653974000	-0.002349000
6	2.028275000	-1.763445000	0.004129000
6	3.403283000	-1.550869000	-0.000164000

6	4.005629000	-0.240944000	-0.007360000
6	3.226783000	0.867443000	-0.003873000
6	1.800537000	0.694741000	-0.000282000
1	2.992651000	2.738545000	0.005318000
1	-1.937464000	2.531026000	0.003352000
1	-4.350540000	2.083402000	0.000694000
1	-6.208201000	0.512175000	-0.004996000
1	-5.798398000	-1.935162000	-0.004008000
1	-3.515018000	-2.797579000	0.001299000
1	-1.092977000	-2.400495000	-0.001031000
1	1.643280000	-2.766360000	0.002432000
1	5.075778000	-0.148791000	-0.022321000
7	4.253582000	-2.610645000	-0.031020000
1	3.896594000	-3.514409000	0.188514000
1	5.207339000	-2.465178000	0.216252000
S _{CT} ($^{1}\pi\pi^{*}$)-1.28(maximum))	
8	1.072493000	2.924015000	-0.018046000
8	3.660171000	2.104588000	0.013172000
6	0.798737000	1.705365000	-0.008477000
6	-0.434033000	1.009108000	-0.002290000
6	-1.743561000	1.484585000	-0.000171000
6	-2.806404000	0.581201000	0.000893000
6	-4.164855000	1.035624000	0.004543000
6	-5.194403000	0.161144000	0.004288000
6	-4.962357000	-1.249831000	0.000085000
6	-3.700635000	-1.727804000	-0.002611000
6	-2.573610000	-0.844360000	-0.001899000
6	-1.270846000	-1.333372000	-0.003328000
6	-0.191697000	-0.437984000	-0.001762000
6	1.195594000	-0.672949000	0.001310000
6	2.040650000	-1.774038000	0.006376000
6	3.419233000	-1.543856000	0.008885000
6	4.010147000	-0.234224000	0.012953000
6	3.220409000	0.877011000	0.009511000
6	1.799635000	0.663241000	0.001719000
1	2.616071000	2.844714000	-0.008480000
1	-1.930303000	2.539193000	-0.001181000
1	-4.346951000	2.095194000	0.007540000
1	-6.207335000	0.524310000	0.006905000
1	-5.801085000	-1.921215000	-0.000851000
1	-3.516557000	-2.787740000	-0.005545000
1	-1.098131000	-2.395107000	-0.003802000
1	1.667311000	-2.781214000	0.000300000

1	5.080089000	-0.135506000	0.007509000
7	4.272949000	-2.598504000	-0.021023000
1	3.922947000	-3.511470000	0.164006000
1	5.232798000	-2.453406000	0.196321000
S _{CT} (¹	ππ*)-Κ		
8	0.978745000	2.980212000	0.004328000
8	3.730296000	2.061828000	-0.010912000
6	0.812622000	1.669473000	0.002520000
6	-0.456069000	1.005657000	0.001436000
6	-1.739552000	1.469679000	0.002169000
6	-2.811679000	0.543621000	0.001535000
6	-4.176699000	0.993478000	0.001383000
6	-5.211815000	0.101147000	0.000384000
6	-4.949315000	-1.302302000	-0.001199000
6	-3.658622000	-1.756814000	-0.001716000
6	-2.554366000	-0.840386000	-0.000857000
6	-1.211844000	-1.305468000	-0.000577000
6	-0.194973000	-0.406085000	-0.000825000
6	1.257054000	-0.573006000	-0.002310000
6	2.031466000	-1.759373000	-0.001963000
6	3.392816000	-1.606225000	-0.002642000
6	4.004466000	-0.268144000	-0.008053000
6	3.232286000	0.938529000	0.013876000
6	1.812512000	0.714465000	0.004610000
1	1.937897000	3.146148000	0.006382000
1	-1.945006000	2.523627000	0.003048000
1	-4.368566000	2.051647000	0.002095000
1	-6.228059000	0.451145000	0.000511000
1	-5.771013000	-1.994428000	-0.002177000
1	-3.451062000	-2.812454000	-0.003274000
1	-1.025658000	-2.365371000	-0.002285000
1	1.573396000	-2.727946000	-0.002070000
1	5.081657000	-0.180419000	-0.041059000
7	4.250563000	-2.649603000	-0.032707000
1	3.900029000	-3.571096000	0.117800000
1	5.211307000	-2.511709000	0.189706000

Section 5-4, Cartesian coordinates of the optimized structures for *para*-CF₃-HBFO along ESIPT reaction pathway in $S_{CT}(^{1}\pi\pi^{*})$ state at the CAS(12e/10o)/6-31G* level of theory.

S _{CT} (¹	ππ*)-Ε		
8	-0.592431446	3.599647928	-0.000282693
8	-3.380818091	3.024846218	-0.000171593
6	-0.496428301	2.367270804	-0.000199439
6	0.668924181	1.536181297	-0.000151116
6	2.004067475	1.875469714	-0.000201368
6	2.984784812	0.853990266	-0.000132941
6	4.371695436	1.159066782	-0.000180320
6	5.304430674	0.173237161	-0.000111144
6	4.921639897	-1.201059372	0.000011050
6	3.614421086	-1.536576280	0.000059722
6	2.593960368	-0.528757761	-0.000009854
6	1.248628380	-0.883804017	0.000043429
6	0.262181601	0.118945864	-0.000025809
6	-1.154847239	0.066628065	0.000011172
6	-2.125427562	-0.979240144	0.000123561
6	-3.440753754	-0.636898713	0.000142812
6	-3.879941465	0.718896172	0.000048043
6	-2.966662005	1.758943397	-0.000071370
6	-1.596612529	1.427295950	-0.000086979
1	-2.595771609	3.609176723	-0.000266059
1	2.290374423	2.908593877	-0.000291791
1	4.668579822	2.192568026	-0.000271660
1	6.350839472	0.424544796	-0.000147927
1	5.682219414	-1.960063111	0.000064044
1	3.312477189	-2.569207234	0.000152506
1	0.983843854	-1.922801354	0.000139256
1	-4.183947428	-1.409834847	0.000228721
1	-4.932450724	0.939481973	0.000063217
6	-1.739016529	-2.427494874	0.000226277
9	-2.788222944	-3.226755068	0.000332008
9	-1.008091867	-2.741034405	1.064346213
9	-1.008178007	-2.741208065	-1.063901593

$S_{CT}(^{1}\pi\pi^{*})$ -1.22(maximum)

8	-0.614087993	3.591863186	0.000069926
8	-3.316589870	3.054304547	-0.000411367
6	-0.491597702	2.353213528	-0.000072358
6	0.674206614	1.531315004	-0.000043792
6	2.010334738	1.868928353	-0.000077720
6	2.989172813	0.842717547	-0.000060920

6	4.374891111	1.144828448	-0.000255866
6	5.306203418	0.155093609	-0.000306649
6	4.920058308	-1.215213477	-0.000100303
6	3.609642526	-1.546852976	0.000071095
6	2.595736784	-0.536342007	0.000048696
6	1.245700125	-0.890203442	0.000100732
6	0.263282852	0.113500672	-0.000005250
6	-1.154933553	0.063180005	-0.000044834
6	-2.136797226	-0.974503336	0.000048120
6	-3.448074975	-0.615035321	-0.000010016
6	-3.874549932	0.747695745	-0.000165679
6	-2.945331050	1.780810652	-0.000262650
6	-1.589210742	1.421856860	-0.000161340
1	-2.279382559	3.696644959	-0.000273554
1	2.301481350	2.900278217	-0.000060166
1	4.675802383	2.177026810	-0.000401974
1	6.352805577	0.405177936	-0.000499914
1	5.676654533	-1.978110294	-0.000102652
1	3.305983824	-2.578948207	0.000191979
1	0.981094551	-1.929271604	0.000167324
1	-4.203460702	-1.376073688	0.000120258
1	-4.924300701	0.980840667	-0.000179417
6	-1.761946843	-2.426706738	0.000292072
9	-2.818057915	-3.216616164	0.000422178
9	-1.033286059	-2.745770123	1.063690997
9	-1.033320345	-2.746125423	-1.063023217

$S_{CT}(^{1}\pi\pi^{*})-K$

8	0.480579635	3.594735502	0.014529937
8	3.228556218	3.064392983	0.004903050
6	0.437335714	2.289493120	0.003188458
6	-0.721569311	1.482856883	0.003646644
6	-2.053256707	1.809783440	0.003034055
6	-3.021605510	0.781444637	0.001868775
6	-4.423823745	1.079135331	-0.003202388
6	-5.351033621	0.072066219	-0.006035161
6	-4.929402028	-1.286380425	-0.004204856
6	-3.592787807	-1.593422940	0.000209781
6	-2.607574680	-0.561614804	0.001679676
6	-1.214945671	-0.886202217	0.001592794
6	-0.295943276	0.105805149	-0.000675062
6	1.191752505	0.116706804	-0.008788074
6	2.210480591	-0.936581214	-0.010541311

6	3.516913182	-0.551042255	-0.010794052
6	3.922120993	0.802016937	-0.011344467
6	2.965744909	1.857492415	-0.010711529
6	1.593424136	1.418942194	-0.013587252
1	1.421962611	3.867724466	0.010241407
1	-2.360752557	2.839267472	0.003352604
1	-4.734026401	2.108651913	-0.004719237
1	-6.400483654	0.303441221	-0.010476026
1	-5.663013826	-2.071250405	-0.004774923
1	-3.270428368	-2.619068733	0.003574860
1	-0.940436646	-1.921406840	-0.001130139
1	4.278135475	-1.308235292	-0.006509306
1	4.964819295	1.064092801	0.000293789
6	1.844794214	-2.382993374	0.003625315
9	2.905929205	-3.168425256	0.019939301
9	1.121521190	-2.719383319	-1.060392465
9	1.106704497	-2.694555857	1.064999276

Section 5-5, Cartesian coordinates of the optimized structures for *para*-NH₂-HBFO along ESIPT reaction pathways in $S_{CT}(^{1}\pi\pi^{*})$ state at the CAS(12e/10o)/6-31G* level of theory.

 $S_{CT}(^{1}\pi\pi^{*})-E$

8	1.396564140	-2.892266859	0.063714285
8	4.073390844	-1.804841612	-0.095347877
6	1.104537770	-1.700506248	0.060377721
6	-0.197369465	-1.072751532	0.063692413
6	-1.466623382	-1.623302780	0.072278722
6	-2.616093180	-0.772229550	0.026937834
6	-3.922632411	-1.308583448	0.033029881
6	-5.018074190	-0.496064253	-0.025644061
6	-4.871209231	0.905591811	-0.096668941
6	-3.625813351	1.454655673	-0.104168590
6	-2.468923653	0.636866867	-0.037811658
6	-1.174552164	1.212318878	-0.041658742
6	-0.036670077	0.370226589	0.030950577
6	1.334709368	0.666116610	0.039930581
6	2.067939798	1.886174938	0.040172675
6	3.468497057	1.797501950	-0.067655691
6	4.112050624	0.554075425	-0.124133659
6	3.408917731	-0.645018964	-0.062091657
6	2.029045456	-0.592960967	0.028319477
1	3.419067039	-2.529554993	-0.051619409
1	-1.588998055	-2.687876661	0.102667691

1	-4.042453433	-2.376145011	0.082959060
1	-6.004362309	-0.925765640	-0.020536745
1	-5.742950177	1.531910418	-0.146337910
1	-3.504153936	2.522653024	-0.160152231
1	-1.063873055	2.277817771	-0.135480060
1	4.053616745	2.695527505	-0.081384501
1	5.185529404	0.510197303	-0.196946621
7	1.416713844	3.119344855	0.118134980
1	2.051061240	3.892793746	0.120052461
1	0.794459635	3.197230385	0.897760850
Sct	$(1\pi\pi^{*})-1.28(\text{maximum})$)	
8	1.432492306	, -2.869969410	0.060726894
8	3.983765766	-1.849585470	-0.097936039
6	1.094998234	-1.672407343	0.061022849
6	-0.215224043	-1.062397402	0.066599956
6	-1.472204990	-1.617342053	0.073207227
6	-2.622828320	-0.765178036	0.027456088
6	-3.929657202	-1.298539637	0.032346747
6	-5.022507796	-0.481805479	-0.025647989
6	-4.867007982	0.917639658	-0.094984437
6	-3.618023952	1.462099631	-0.101976390
6	-2.466606846	0.640416424	-0.037749377
6	-1.163058339	1.209504734	-0.042985719
6	-0.050583020	0.381775586	0.028562353
6	1.338493610	0.665197424	0.036087729
6	2.114090003	1.889740556	0.038488720
6	3.506597856	1.777657745	-0.067915986
6	4.134541329	0.519998338	-0.125581298
6	3.406624071	-0.667873775	-0.058631786
6	2.011311356	-0.575107628	0.038036056
1	2.996999816	-2.662466548	-0.035350670
1	-1.592922412	-2.682352119	0.102067722
1	-4.052614964	-2.365934885	0.081888227
1	-6.010751965	-0.906658770	-0.020642149
1	-5.735071521	1.549261066	-0.143428305
1	-3.492772513	2.529622558	-0.157026398
1	-1.054319437	2.275450127	-0.132803506
1	4.107913331	2.665282629	-0.078812487
1	5.205900786	0.457677369	-0.201445438
7	1.472619791	3.123972246	0.113484863
1	2.107602565	3.895914653	0.152586466
1	0.807909448	3.192564788	0.858237199

$S_{CT}(^{1}\pi\pi^{*})-K$				
8	1.341339112	-2.853153210	0.041363103	
8	4.093851657	-1.828433038	-0.057452191	
6	1.088758456	-1.680310299	0.031729110	
6	-0.253460883	-1.031023461	0.043264857	
6	-1.483560250	-1.606149811	0.047478099	
6	-2.651247726	-0.760239521	0.018354170	
6	-3.953869659	-1.301150926	0.026819430	
6	-5.050838623	-0.489610165	-0.009970328	
6	-4.888845481	0.906135022	-0.058942148	
6	-3.637694550	1.452326198	-0.068288599	
6	-2.487476242	0.635491292	-0.028314477	
6	-1.162728964	1.214190054	-0.033105132	
6	-0.074101414	0.396147997	0.012371848	
6	1.389720312	0.665672472	0.009561378	
6	2.103514332	1.845432899	0.020253874	
6	3.500503189	1.736524448	-0.023884809	
6	4.161517716	0.527862067	-0.066100744	
6	3.436516320	-0.662842760	-0.039579802	
6	2.060331822	-0.566873312	0.003404826	
1	3.456794122	-2.559206340	-0.034296362	
1	-1.590123996	-2.676020143	0.065538785	
1	-4.069922574	-2.370212998	0.062525857	
1	-6.039711349	-0.911268581	-0.002904909	
1	-5.756220672	1.540993233	-0.089665516	
1	-3.514161545	2.520435189	-0.107264737	
1	-1.064377175	2.280812745	-0.096947610	
1	4.086619550	2.640010589	-0.025284983	
1	5.234081158	0.489280982	-0.103530357	
7	1.459138858	3.103712366	0.039596283	
1	2.108727077	3.862314856	0.010033283	
1	0.870567109	3.220070696	0.863025947	