Electronic supplementary information

Non-Hydroxyl Radical Mediated Photochemical Processes for Dye Degradation

Xitong Liu, Xiaojie Song, Shujuan Zhang*, Mengshu Wang and Bingcai Pan

State Key Laboratory of Pollution Control and Resource Reuse, School of the

Environment, Nanjing University, Nanjing, 210023, China

*Corresponding author. Tel.: +86 25 8968 0389. E-mail address: sjzhang@nju.edu.cn.

This file contains 4 tables, 2 schemes and 7 figures.

Tables:

Table S1. Mobile phase gradient for the LC-MS/MS experiments.

Table S2. Degradation products of AO7 in the UV/diketone and UV/ H_2O_2 processes.

Table S3. Degradation products of MO in the UV/diketone and UV/H₂O₂ processes.

Table S4. The toxicology of the three diketones and H_2O_2 .

Schemes:

Scheme S1. Molecular structures of the three diketones and the four dyes. Scheme S2. The picture and a schematic illustration of the photoreactor rig.

Figures:

Fig. S1. The light spectrum of the medium-pressure mercury lamp.

- Fig. S2. Decoloration of MO in the UV/diketone and UV/ H_2O_2 processes.
- Fig. S3. Decoloration of AR in the UV/diketone and UV/H₂O₂ processes.
- Fig. S4. Decoloration of RB in the UV/diketone and UV/H₂O₂ processes.
- Fig. S5. Effect of solution pH on the degradation of AO7 and MO in the UV/diketone and UV/H_2O_2 processes.
- Fig. S6. Effect of ethanol on the decoloration of AO7 in the UV/diketone and UV/H₂O₂ processes.
- Fig. S7. UV-Vis spectra of MO, diketones and the mixture of MO and diketones.

Time (min)	Flow (ml/min)	0.1% HCOOH/H ₂ O (%)	CH ₃ OH (%)
0	0.2	90	10
38	0.2	10	90
42	0.2	90	10
55	0.2	90	10

Table S1. Mobile phase gradient for the LC-MS/MS experiments.

Table S2. Degradation products of AO7 in the UV/diketone and UV/ H_2O_2 processes.

No.	RT^{a}	m/z	MS^2	Detectability ^b			
			fragments	AA	BD	HD	H_2O_2
Al	7.36	172	_c			\checkmark	ND
A2	9.20	173	146, 80	\checkmark	\checkmark	\checkmark	\checkmark
A3	13.64	214	-	\checkmark	\checkmark	\checkmark	ND
A4	8.22	189	125, 109	\checkmark	\checkmark	\checkmark	\checkmark
A5	30.30	343	325, 219, 170	\checkmark	\checkmark	\checkmark	ND
A6	32.05	391	-	ND	ND	ND	\checkmark
A7	39.92	427	410, 385, 370, 328, 283, 240, 172		ND	ND	ND
A8	43.84	299	235, 219		\checkmark	\checkmark	\checkmark

^{*a*} RT: retention time. b $\sqrt{}$: detected, ND: not detectable. ^{*c*} -: not available.

No.	RT	m/z	MS ²	Detected or not			
			fragments	AA	BD	HD	H_2O_2
M1	7.36	172	-		ND	\checkmark	ND
M2	9.20	173	-	\checkmark	\checkmark	\checkmark	\checkmark
M3	13.64	214	172, 150, 134	\checkmark	ND	\checkmark	ND
M4	14.43	228	184, 171	\checkmark	ND	\checkmark	ND
M5	19.57	390	372, 213, 198	\checkmark	ND	ND	ND
M6	20.92	404	386, 362, 213, 198	\checkmark	ND	ND	ND
M6′	24.98	404	-	ND	\checkmark	\checkmark	ND
M7	20.61	362	-	\checkmark	ND	ND	ND
M8	23.49, 25.01	320	304	\checkmark	\checkmark	\checkmark	\checkmark
M9	35.95	360	316, 296, 156	\checkmark	ND	ND	ND
M10	37.20	290	275, 226, 156	\checkmark	\checkmark	\checkmark	\checkmark
M11	39.95	346	317, 282, 156	\checkmark	ND	\checkmark	ND
M12	0.99	193	-	\checkmark	ND	ND	ND

Table S3. Degradation products of MO in the UV/diketone and UV/H $_2O_2$ processes.

	BD^{*a}	AA^b	HD ^c	$H_2O_2^{d}$
LD ₅₀ (oral, rat) (mg/kg)	1580	570-760	1600	910
LD ₅₀ (dermal, rabbit) (mg/kg)	> 5000	790-1370	N.A.	> 2000
LC50 (inhalation, rat, 4 hour) (mg/L)	2.25-5.2	5.1	2000	2

Table S4. The toxicology of the three diketones and H_2O_2 .

*: BD is a byproduct of fermentation. It occurs naturally in alcoholic beverages and is used as additive

for some foods to impart a buttery flavor.

^{*a*} *Diacetyl*; MSDS No. D3634 [online]; Sigma-Aldrich: Saint Louis, MO, 18 Mar, 2013.

http://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=US&lan guage=en&productNumber=D3634&brand=SIGMA&PageToGoToURL=http%3A% 2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Fsigma%2Fd3634%3Flang %3Den (accessed September 16, 2013)

^b Acetylacetone; MSDS No.00900 [online]; Sigma-Aldrich: Saint Louis, MO, 19 Sept 2012.

http://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=US&lan guage=en&productNumber=00900&brand=FLUKA&PageToGoToURL=http%3A% 2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Ffluka%2F00900%3Flang %3Den (accessed September 16, 2013).

^{*c*} Acetonylacetone, MSDS No. 00770[online]; Sigma-Aldrich: Saint Louis, MO, 13 Jul 2012.

http://www.sigmaaldrich.com/MSDS/MSDS/DisplayMSDSPage.do?country=US&lan guage=en&productNumber=00770&brand=FLUKA&PageToGoToURL=http%3A% 2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Ffluka%2F00770%3Flang %3Den (accessed September 16, 2013).

^{*d*} *Hydrogen Peroxide*, MSDS No. H1009 [online]; Sigma-Aldrich: Saint Louis, MO, 26 Jan 2013.

http://www.sigmaaldrich.com/MSDS/MSDS/PleaseWaitMSDSPage.do?language=&c ountry=US&brand=SIGMA&productNumber=H1009&PageToGoToURL=http://ww w.sigmaaldrich.com/catalog/product/sigma/h1009?lang=en®ion=US (accessed September 16, 2013).

S5

Scheme S2. The picture and a schematic illustration of the photoreactor rig.

Fig. S1. The light spectrum of the medium-pressure mercury lamp.

Fig. S2. (a) Evolution of the UV-Vis spectra of MO in the UV/diketone and UV/H₂O₂ processes. (b) Intensities of the three main UV/Vis absorption peaks of MO plotted as a function of irradiation time. The absorption intensity at 464 nm was normalized, and the intensities at 244 and 270 nm were the original absorption values. [MO] = 0.12 mM, [Activator] = 1 mM. Light intensity: 7.0 mW cm⁻². Samples were diluted for 2.5 times prior to analysis.

Fig. S3. (a) Evolution of the UV-Vis spectra of RB in the UV/diketone and UV/H₂O₂ processes. [RB] = 0.03 mM, [Activator] = 0.5 mM. (b) Degradation kinetics of RB in the UV/diketone and UV/H₂O₂ processes. [RB] = 0.05 mM, [Activator] = 0.5 mM.

Fig. S4. Evolution of the UV-Vis spectra of AR in the UV/diketone and UV/H₂O₂ processes. [AR] = 0.1 mM, [Activator] = 0.5 mM, Light intensity: 5.3 mW cm⁻². Samples were diluted for 5 times prior to analysis.

Fig. S5. The initial pseudo-first order decoloration rate constants of AO7 (a) and MO (b) in 0.2 mol/L NaAc/HAc buffer solutions of pH 4.0 and 5.8. (a) [AO7] = 0.16 mM, [Activator] = 0.5 mM. (b) [MO] = 0.12 mM, [Activator] = 1 mM. Error bar represents the standard deviation of duplicates.

Fig. S6. Effect of ethanol on the decoloration of AO7 in the UV/diketone and UV/H_2O_2 processes (Black: no ethanol, red: with ethanol).

Fig. S7. UV-Vis spectra of MO, diketones and the mixture of MO and diketones.

*: The spectra of MO-diketone solution were exactly the sum of the individual spectra of MO and diketones.