Electronic Supplementary Information

for

$^{1}J_{CH}$ couplings in Group14/IVA tetramethyls from the gas-phase NMR and DFT structural study: a search for the best computational protocol

Ryszard B. Nazarski*^a and Włodzimierz Makulski^b

^aLaboratory of Molecular Spectroscopy, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland ^bLaboratory of NMR Spectroscopy, Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland

E-mail: nazarski@uni.lodz.pl

Contents:

Table S1. Selected B3LYP/basis sets combinations tested (two steps considered) S2	2
Table S2 . In vacuo computed (protocol II) $r_e vs.$ experimental r_g in all five species EMe ₄ S	3
Table S3 . In vacuo computed (protocol II) $\omega_{as}(CH_3)$ vs. gas-phase experimental $v_{as}(CH_3)$ Sases	3
Table S4 . ${}^{1}J_{CH}s$ in vacuum/CCl ₄ /C ₆ H ₆ vs. their computed values (including all four Ramsey terms) S	4
Fig. S1 . Dependence of $\Delta^1 J_{CH}^{exp}$ on the reaction field function of relative permittivity ε	5
Fig. S2 . Plot of computed (protocol II) r_e bond lengths <i>vs</i> . related experimental r_g distances	5
Fig. S3 . Plot of <i>in vacuo</i> computed (protocol II) $\omega_{as}(CH_3)s vs$. experimental gas-phase $v_{as}(CH_3)s$ S	6
Fig. S4 . The group electronegativity $\chi_g vs$. experimental ${}^1J_{0,CH,av}(gas)$ values	6
Fig. S5 . Plot of experimental ${}^{1}J_{0,CH,av}(gas) vs. {}^{2}J_{HH}(CCl_{4})$ values	7
Fig. S6 . Plot of the computed (protocol II) H–C–H bond angles <i>vs</i> . experimental ${}^{2}J_{HH}(CCl_{4})s$ S	7
Fig. S7 . The atom electronegativity $\chi_a vs$. experimental ${}^2J_{HH}(CCl_4)$ data	8
Fig. S8 . The group electronegativity $\chi_g vs$. experimental ${}^2J_{HH}(CCl_4)$ data	8

Tables S5-S9. In vacuo computed (protocol II) Cartesian coordinates/energies for all species EMe₄ S9-S11

	Geometry	optimizations	<i>J</i> -coupling	calculations		D for 1 /	
#	Basis set for the E atom	Basis set for C and H atoms	Basis set for the E atom	Basis set for C and H atoms	$= f[\omega_{as}(CH_3)]$	$= f(^{1}\mathcal{J}_{CH}^{\text{theor}})$	Notes
1	F	D	0	G	0.9924	0.9650	b
2	F	D	0	G	0.9929	0.9658	
3	Α	D	L	G	0.9987	0.9690	b
4	Α	D	L	G	0.9973	0.9807	
5	м	М	м	G	0.9959	0.9783	
6	Α	С	L	G	0.9982	0.9815	b, c
7	Α	С	м	I	0.9994	0.9844	
8	Α	С	L	J	0.9994	0.9845	
9	Α	С	L	G	0.9994	0.9847	Protocol I
10	В	С	м	I	0.9998	0.9834	
11	В	С	м	J	0.9998	0.9840	
12	В	С	м	G	0.9998	0.9879	Protocol II
13	В	D	М	G	0.9970	0.9845	b
14	В	D	м	G	0.9967	0.9848	

 Table S1.
 Selected B3LYP/basis sets combinations tested (two steps considered)^a

^a The gas-phase results for the all five species EMe_4 . ^b The six Cartesian *d* functions have been employed (6D option). ^c Without the keyword 'Int=UltraFine'.

Notation of all basis sets used in this work:

Α	def2-TZVPP
в	def2-TZVPPD
С	6-31G(<i>d</i> , <i>p</i>)
D	6-31+G(<i>d</i> , <i>p</i>)
Е	6-31+G(2 <i>df</i> , <i>p</i>)
F	aug-cc-pVTZ or aug-cc-pVTZ-PP (Sn, Pb)
G	IGLO-II
Н	IGLO-III
I	aug-cc-pVTZ-J
J	pcJ-2
к	pcJ-3
L	def2-QZVPP
М	def2-QZVPPD
Ν	cc-pVQZ or cc-pVQZ-PP (Sn, Pb)
0	aug-cc-pVQZ or aug-cc-pVQZ-PP (Sn, Pb)

	$r_{\rm g}^{\rm a-e}$	$r_{\rm e}^{\rm f}$	$r_{\rm e,scal}$ ^{f,g}	$r_{\rm g} - r_{\rm e,scal}$	$r_{e,lit}^{h}$	$r_{\rm e} - r_{\rm e,lit}$
С-С ^а	1.537	1.536	1.540	-0.003	1.537	-0.001
С-Н	1.114	1.096	1.103	0.011		
1,3 С…Н	2.200	2.184	2.183	0.017		
С…С	2.508	2.508	2.505	0.003		
1,4 C…H	2.767	2.761	2.756	0.011		
1,4 С…Н	3.480	3.474	3.463	0.017		
Si-C ^b	1.877	1.882	1.884	-0.007	1.896	-0.014
С-Н	1.110	1.096	1.104	0.007		
Si…H	2.500	2.501	2.498	0.002		
С…С	3.065	3.074	3.066	-0.001		
1,4 C…H	3.293	3.294	3.285	0.008		
1,4 С…Н	4.031	4.035	4.021	0.011		
					_	_
Ge –C ^c	1.958	1.976	1.977	-0.019	1.969	0.007
С-Н	1.111	1.094	1.102	0.009		
Ge…H	2.570	2.577	2.573	-0.003		
C···C	3.198	3.226	3.218	-0.020		
					_	_
Sn –C ^d	2.144	2.168	2.168	-0.024	2.172	-0.004
С-Н	1.118	1.094	1.101	0.017		
Sn…H	2.764	2.749	2.744	0.020		
Pb –C ^e	2.238	2.258	2.256	-0.018	2.256	0.002
С-Н	1.083 ⁱ	1.092	1.100	-0.017		
Pb…H ^k	[2.721] ¹	[2.817]	[2.807]	[-0.086]		
С…С	3.656	3.687	3.675	-0.019		

Table S2. In vacuo computed $r_e vs$. experimental r_g (from the GED data)^{a-e} intramolecular distances in all five species EMe₄, [Å]

^a Ref. 1. ^b Ref. 2. ^c Ref. 3. ^d Ref. 4. ^e Ref. 5. ^f This work (protocol II). ^g Corrected (scaled) r_e values computed with the equation $r_{e,scal} = (r_e + 0.01584)/1.0076$; see also Fig. S2. ^h B3LYP/RESC-derived E–C bond lengths, ref. 6. ⁱ This r_g distance seems to be underestimated, in the light of the C–H bond lengths in other species EMe₄. ^j Most likely strongly underestimated value. ^k This distance was not used in the least squares regression analysis.

Table S3.	In vacuo	computed	$\omega_{as}(CH_3)$	vs. gas-pha	se exper	imental	$v_{as}(CH)$	$[_3)$ (from	IR	spectra)'	i-c
C–H vibra	tional stre	tching fund	damentals	for all five	e species	EMe ₄ ,	$[cm^{-1}]$				

Compound	$v_{as}(CH_3)^a$	$\omega_{as}(CH_3)^d$	$\omega_{\rm as}({\rm CH_3})_{\rm scal}{}^{\rm d,e}$	$v_{as}(CH_3) - \omega_{as}(CH_3)_{scal}$	other v _{as} (CH ₃)s
CMe ₄	2960.7 ^f	3104.93	2960.71	0.0	2962, ^b 2959 ^c
SiMe ₄	2964.2	3109.12	2964.18	0.0	
GeMe ₄	2980.6	3128.63	2980.34	0.3	
SnMe ₄	2986.5	3136.49	2986.86	-0.4	
PbMe ₄	3005.0	3158.27	3004.91	0.1	

^a Ref. 7. ^b Ref. 8. ^c Ref. 9. ^d This work (protocol II). ^e Corrected (scaled) $\omega_{as}(CH_3)$ values computed applying the equation $\omega_{as}(CH_3)_{scal} = [\omega_{as}(CH_3) + 468.34]/1.2069$; see also Fig. S3. ^f The second (?) value at 2967.5 cm⁻¹ has also been originally given for this fundamental frequency,^a which was omitted in the current analysis.

Compound	Medium	FC	SD	PSO	DSO	Total J^{theor}	${}^{1}J_{\mathrm{CH}}{}^{\mathrm{b,c,d}}$	
	gas (I)	119.67	0.19	0.92	0.73	121.50	123 93(4)	
	gas (II)	119.70	0.18	0.92	0.73	121.52	125.75(4)	
CMe ₄	CCl ₄ (I)	119.65	0.19	0.92	0.73	121.48	124 0(2)	
	CCl ₄ (II)	119.67	0.18	0.92	0.73	121.50	124.0(2)	
	C_6H_6 (II)	119.67	0.18	0.92	0.73	121.50	124.3	
	gas (I)	114.45	0.29	1.46	0.68	116.88	117 88(4)	
	gas (II)	114.25	0.29	1.46	0.68	116.68	117.00(4)	
SiMe ₄	CCl ₄ (I)	114.44	0.29	1.46	0.68	116.87	117.8(2)	
	CCl ₄ (II)	114.24	0.29	1.46	0.68	116.67	117.8(2)	
	C_6H_6 (II)	114.24	0.29	1.46	0.68	116.66	118.2	
	gas (I)	120.84	0.33	1.13	0.98	123.27	124.05(1)	
	gas (II)	120.70	0.33	1.13	0.98	123.13	124.03(1)	
GeMe ₄	CCl ₄ (I)	120.82	0.33	1.13	0.98	123.25	124 6(2)	
	CCl ₄ (II)	120.67	0.33	1.13	0.98	123.10	124.0(2)	
	C_6H_6 (II)	120.67	0.33	1.13	0.98	123.10	124.4	
	gas (I)	124.30	0.39	1.21	0.63	126.53	127 12(5)	
	gas (II)	124.15	0.39	1.21	0.63	126.38	127.13(3)	
SnMe ₄	CCl ₄ (I)	124.23	0.39	1.22	0.63	126.46	127 8(2)	
	CCl ₄ (II)	124.08	0.39	1.22	0.63	126.31	127.0(2)	
	C_6H_6 (II)	124.08	0.39	1.22	0.63	126.31	127.7	
PbMe₄	gas (I)	130.67	0.44	1.10	0.57	132.79	133 20(3)	
	gas (II)	130.51	0.44	1.10	0.57	132.62	155.29(5)	
	CCl ₄ (I)	130.57	0.44	1.11	0.57	132.69	12/ 2(2)	
-	CCl ₄ (II)	130.41	0.44	1.11	0.57	132.53	134.3(2)	
	C_6H_6 (II)	130.41	0.44	1.11	0.57	132.53	134.2	

Table S4. Computed^a vs. observed ${}^{1}J_{CH}$ couplings for species EMe₄ in vacuum^b and in CCl₄ or C₆H₆ solution,^c together with their decomposition into all four Ramsey terms, [Hz]

^a Protocol I, II, I-CCl₄, II-CCl₄, and II-C₆H₆ was applied, respectively. ^b The experimental ${}^{1}J_{0,CH av}$ values from Table 1 (in the main text) were used as *in vacuo* data. ^c The data for ~10% CCl₄ solution from ¹H NMR spectra, according to ref. 10.^d The data for ~10% C₆H₆ solution from ${}^{13}C{}^{1}H{}$ NMR spectra, according to ref. 11.

Fig. S1. Dependence of $\Delta^1 J_{CH}^{exp} = {}^1 J_{CH}(neat) - {}^1 J_{0,CH,av}(gas)$ on the reaction field function of relative permittivity ε for the three normally liquid tetramethyls; *J* data from Table 1 (main text) and ε values from ref. 12 were used.

Fig. S2. Plot of computed (protocol II) r_e bond lengths *vs.* related experimental r_g distances for all five species EMe₄; the numeral data from Table S2 were used.

Fig. S3. Plot of *in vacuo* computed (protocol II) harmonic ω_{as} (CH₃)s *vs.* experimental gas-phase frequencies, v_{as} (CH₃)s, for all five species EMe₄; the data from Table S3 were applied.

Fig. S4. The group electronegativity $\chi_g vs$. experimental ${}^1J_{0,CH,av}(gas)$ values; the CMe₄ data point (**■**) was omitted. Statistics with the χ_g corrected for GeMe₄ (3.88 eV) are in the bracket. The numeral data from Tables 1 and 3 (main text) were used.

Fig. S5. Plot of experimental ${}^{1}J_{0,CH,av}(gas) vs. {}^{2}J_{HH}(CCl_{4})$ values; the CMe₄ point (\blacksquare) was omitted. The data from Tables 1 and 3 (main text) were applied.

Fig. S6. Plot of the computed (protocol II) HCH bond angles *vs.* experimental ${}^{2}J_{\text{HH}}(\text{CCl}_{4})$ couplings; the CMe₄ point (**n**) was omitted. The data from Table 3 (main text) were used.

Fig. S7. The atom electronegativity $\chi_a vs.$ experimental ${}^2J_{\rm HH}(\rm CCl_4)$ couplings; the CMe₄ point (**■**) was omitted. Statistics with the χ_a corrected for Ge (4.54 eV) are in the bracket. The data from Table 3 (main text) were used.

Fig. S8. The group electronegativity $\chi_g vs.$ experimental ${}^2J_{\rm HH}(\rm CCl_4)$ couplings; the CMe₄ data point (**•**) was omitted. Statistics with the χ_g corrected for -GeMe₃ (3.88 eV) are in the bracket. The data from Table 3 (main text) were used.

Table S5. Cartesian coordinates for CMe₄

[In vacuo, the protocol II^{\ddagger} used, N_{imag} = 0, E(RB+HF-LYP) = -197.799809 Ha]

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	0.000000	0.000000	0.000000
2	б	0	0.886699	0.886699	0.886699
3	6	0	-0.886699	-0.886699	0.886699
4	6	0	-0.886699	0.886699	-0.886699
5	б	0	0.886699	-0.886699	-0.886699
6	1	0	1.531597	1.531597	0.279146
7	1	0	0.279146	1.531597	1.531597
8	1	0	1.531597	0.279146	1.531597
9	1	0	-1.531597	-1.531597	0.279146
10	1	0	-1.531597	0.279146	-1.531597
11	1	0	0.279146	-1.531597	-1.531597
12	1	0	-0.279146	-1.531597	1.531597
13	1	0	-1.531597	-0.279146	1.531597
14	1	0	-1.531597	1.531597	-0.279146
15	1	0	-0.279146	1.531597	-1.531597
16	1	0	1.531597	-0.279146	-1.531597
17	1	0	1.531597	-1.531597	-0.279146

[‡]B3LYP/6-31G(*d*,*p*)(C,H)def2-TZVPPD(E)

Table S6. Cartesian coordinates for SiMe₄

[In vacuo, the protocol II used, Nimag = 0, E(RB+HF-LYP)= -449.2407721 Ha]

CenterAtomicAtomicCoordinates (Angstroms)NumberNumberTypeXY11400.0000000.0000002600.0000001.882	
Number Number Type X Y Z 1 14 0 0.000000 0.00000 0.000 2 6 0 0.000000 0.000000 1.882	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Z
2 6 0 0.000000 0.000000 1.882	0000
2 3 3 0.000000 0.000000 1.002	2286
3 6 0 1.774636 0.000000 -0.627	7429
4 6 0 -0.887318 -1.536880 -0.627	7429
5 6 0 -0.887318 1.536880 -0.627	7429
6 1 0 -1.020116 0.000000 2.283	3291
7 1 0 0.510058 -0.883446 2.283	3291
8 1 0 0.510058 0.883446 2.283	3291
9 1 0 1.812669 0.000000 -1.722	2872
10 1 0 -0.906335 -1.569817 -1.722	2872
11 1 0 -0.906335 1.569817 -1.722	2872
12 1 0 2.322727 0.883446 -0.280	0210
13 1 0 2.322727 -0.883446 -0.280	0210
14 1 0 -0.396277 -2.453264 -0.280	0210
15 1 0 -1.926450 -1.569817 -0.280	0210
16 1 0 -1.926450 1.569817 -0.280	0210
17 1 0 -0.396277 2.453264 -0.280	0210

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Ζ
1	32	0	0.000000	0.000000	0.000000
2	б	0	0.00000	0.00000	1.975809
3	б	0	1.862810	0.00000	-0.658603
4	б	0	-0.931405	-1.613241	-0.658603
5	б	0	-0.931405	1.613241	-0.658603
б	1	0	-1.022618	0.00000	2.365508
7	1	0	0.511309	-0.885613	2.365508
8	1	0	0.511309	0.885613	2.365508
9	1	0	1.889349	0.00000	-1.752636
10	1	0	-0.944675	-1.636224	-1.752636
11	1	0	-0.944675	1.636224	-1.752636
12	1	0	2.400658	0.885613	-0.306436
13	1	0	2.400658	-0.885613	-0.306436
14	1	0	-0.433366	-2.521837	-0.306436
15	1	0	-1.967292	-1.636224	-0.306436
16	1	0	-1.967292	1.636224	-0.306436
17	1	0	-0.433366	2.521837	-0.306436

Table S7. Cartesian coordinates for GeMe₄

[In vacuo, the protocol II used, $N_{imag} = 0$, E(RB+HF-LYP) = -2236.7460606 Ha]

Table S8. Cartesian coordinates for SnMe₄

[In vacuo, the protocol II used, $N_{imag} = 0$, E(RB+HF-LYP) = -374.045353 Ha]

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	50	0	0.000000	0.000000	0.000000
2	б	0	0.00000	0.00000	2.168123
3	б	0	2.044126	0.00000	-0.722708
4	б	0	-1.022063	-1.770265	-0.722708
5	б	0	-1.022063	1.770265	-0.722708
б	1	0	-1.024413	0.00000	2.551411
7	1	0	0.512207	-0.887168	2.551411
8	1	0	0.512207	0.887168	2.551411
9	1	0	2.064022	0.00000	-1.816296
10	1	0	-1.032011	-1.787495	-1.816296
11	1	0	-1.032011	1.787495	-1.816296
12	1	0	2.576228	0.887168	-0.367557
13	1	0	2.576228	-0.887168	-0.367557
14	1	0	-0.519804	-2.674663	-0.367557
15	1	0	-2.056424	-1.787495	-0.367557
16	1	0	-2.056424	1.787495	-0.367557
17	1	0	-0.519804	2.674663	-0.367557

Table S9. Cartesian coordinates for PbMe₄

[In vacuo, the protocol II used, Nimag = 0, E(RB+HF-LYP) = -352.5624235 Ha]

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	82	0	0.00000	0.00000	0.00000
2	б	0	0.00000	0.00000	2.257628
3	б	0	2.128512	0.00000	-0.752543
4	б	0	-1.064256	-1.843346	-0.752543
5	б	0	-1.064256	1.843346	-0.752543
6	1	0	-1.029569	0.00000	2.621891
7	1	0	0.514785	-0.891633	2.621891
8	1	0	0.514785	0.891633	2.621891
9	1	0	2.128753	0.00000	-1.844651
10	1	0	-1.064376	-1.843554	-1.844651
11	1	0	-1.064376	1.843554	-1.844651
12	1	0	2.643538	0.891633	-0.388620
13	1	0	2.643538	-0.891633	-0.388620
14	1	0	-0.549592	-2.735187	-0.388620
15	1	0	-2.093946	-1.843554	-0.388620
16	1	0	-2.093946	1.843554	-0.388620
17	1	0	-0.549592	2.735187	-0.388620

References:

- 1 L. S. Bartell and W. F. Bradford, J. Mol. Struct., 1977, 37, 113–126.
- 2 A. R. Campanelli, F. Ramondo, A. Domenicano and I. Hargittai, Struct. Chem., 2000, 11, 155–160.
- 3 E. Csákvári, B. Rozsondai and I. Hargittai, J. Mol. Struct., 1991, 245, 349-355.
- 4 M. Nagashima, H. Fuji and M. Kimura, Bull. Chem. Soc. Jpn., 1973, 46, 3708–3711.
- 5 T. Oyamada, T. Iijima and M. Kimura, Bull. Chem. Soc. Jpn., 1971, 44, 2638–2642.
- 6 W. Lie, D. G. Fedorov and K. Hirao, J. Phys. Chem. A, 2002, 106, 7057–7061.
- 7 H. Bürger and S. Biedermann, Spectrochim. Acta A, 1972, 28, 2283–2286.
- 8 C. W. Young, J. S. Koehler and D. S. McKinney, J. Am. Chem. Soc., 1947, 69, 1410–1415.
- 9 E. R. Shull, T. S. Oakwood and D. H. Rank, J. Chem. Phys., 1953, 21, 2024–2029.
- 10 M. J. Lacey, C. G. Macdonald, A. Pross, J. S. Shannon and S. Sternhell, Aust. J. Chem., 1970, 23, 1421–1429.
- 11 F. J. Weigert, M. Winokur and J. D. Roberts, J. Am. Chem. Soc., 1968, 90, 1566–1569.
- 12 S. Geer and R. A. Holroyd, *Phys. Rev. B*, 1992, **46**, 5043–5046.