Supporting Information

A DFT+U Study of Acetylene Selective Hydrogenation over Anatase Supported Pd_aAg_b(a+b=4) Cluster

Ling-Dong Meng¹ and Gui-Chang Wang^{1,2*}

(¹ Department of Chemistry, Tianjin Key Lab of Metal and Molecule-based Material Chemistry and Synergetic Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, P. R. China; ² State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P.R.China)

*Corresponding authors: Gui-Chang Wang. E-mail: wangguichang@nankai.edu.cn

Telephone: +86-22-23503824 (O) Fax: +86-22-23502458

Table S1 Bader charge for various model catalysts (unit: e)						
species	Bader Charge	Δ				
Pd ₄ cluster	64.00	0.50				
Pd ₄ (TiO ₂ -A-Ov)	64.50	0.50				
Pd ₃ Ag cluster	59.00	0.00				
PdAg ₃ (TiO ₂ -A-Ov)	59.28	0.28				
Pd_2Ag_2 cluster	54.00	0.10				
$Pd_2Ag_2(TiO_2-A-Ov)$	54.18	0.18				
PdAg ₃ cluster	49.00	0.08				
PdAg ₃ (TiO ₂ -A-Ov)	49.08					

. –		- 0-	-	· · ·					
	<u>Pd4</u>	Pd_2Ag_2	<u>Pd4</u>	Pd_2Ag_2	<u>Pd</u> 4	Pd_2Ag_2	<u>Pd</u> 4	Pd_2Ag_2	•
	C ₂ H ₂ +H	$H \rightarrow C_2 H_3$	C ₂ H ₃ +H	$I \rightarrow C_2 H_4$	C ₂ H ₄ +H	$H \rightarrow C_2 H_5$	C ₂ H ₅ +H	$I \rightarrow C_2 H_6$	
E_{a}	0.96	1.23	0.00	1.50	0.93	1.23	0.18	1.31	
$E^{\scriptscriptstyle ads}_{\scriptscriptstyle TS}$	-2.86	-1.78	-4.87	-2.90	-2.97	-1.78	-4.25	-2.59	
$E^{\scriptscriptstyle C_2H_2}_{\scriptscriptstyle TS}$	-1.35	-0.17	-2.08	-1.19	-1.38	-0.25	-1.35	-1.34	
$E^{\scriptscriptstyle H}_{\scriptscriptstyle TS}$	-2.53	-1.92	-2.01	-1.54	-2.01	-1.86	-1.99	-1.77	
$E^{\scriptscriptstyle { m int}}_{\scriptscriptstyle TS}$	1.02	0.31	-0.78	-0.17	0.42	0.33	-0.91	0.52	
$E^{\scriptscriptstyle coads}_{\scriptscriptstyle IS}$	-3.81	-3.01	-4.87	-4.40	-3.90	-3.01	-4.43	-3.90	
$E^{\scriptscriptstyle C_2H_2}_{\scriptscriptstyle IS}$	-1.16	-0.21	-2.12	-1.74	-1.19	-0.41	-1.42	-1.19	
$E^{\scriptscriptstyle H}_{\scriptscriptstyle IS}$	-2.92	-2.12	-2.51	-2.12	-2.53	-2.22	-2.14	-2.19	
$E^{\scriptscriptstyle { m int}}_{\scriptscriptstyle { m \it IS}}$	0.27	-0.67	-0.24	-0.53	-0.18	-0.38	-0.87	-0.52	
$\Delta \left(\sum E_{frag} \right)$	0.21	0.25	0.54	1.14	0.33	0.52	0.22	0.27	
$\Delta E_{\rm int}$	0.75	0.98	-0.54	0.36	0.60	0.71	-0.04	1.04	

Table S2 Energy decomposition of the calculated activation energy of the first three hydrogenation steps on Pd_4/TiO_2 -A-Ov and Pd_2Ag_2/TiO_2 -A-Ov (unit: eV).

Note: The E_{TS}^{ads} is the adsorption energy of the TS, which can be expressed by the following formula:^{46,60} $E_{TS}^{ads} = E_{TS}^{C_2H_x} + E_{TS}^{H} + E_{TS}^{int}$. Here, $E_{TS}^{C_2H_x}$, E_{TS}^{H} , and E_{TS}^{int} are the adsorption energy of the gaseous C₂H₂, H and interaction between the two fragments at the TS. Analogously, E_{TS}^{coads} is the co-adsorption energy of IS and it is shown in the following formula: $E_{TS}^{coads} = E_{TS}^{C_2H_x} + E_{TS}^{H} + E_{TS}^{int}$. Here, $E_{TS}^{C_2H_x}$, E_{TS}^{H} , and E_{TS}^{int} are the adsorption energy of the gaseous C₂H_x, H and interaction between the two fragments at the IS. Consequently, the variations of both the rebonding and adsorption energy summed over the fragments $\Delta(\Sigma E_{frag})$ and the variations of the interaction energy (ΔE_{int}) make up the activation energy E_a , that is $E_a = \Delta(\Sigma E_{frag}) + \Delta E_{int}$. Fig. S1 The relationship between the number of Pd atom and the charge transfer

Fig.S2 Adsorption configurations of TSs on Pd_aAg_b/TiO_2 -A-Ov

Fig. S3 Adsorption configurations of acetylene, vinyl, ethylene and ethyl on $Pd_2Ag_2/Pd(111)$ and Pd_2Ag_2 cluster.

Fig.S4 Adsorption configurations of TSs on $Pd_2Ag_2/Pd(111)$ and Pd_2Ag_2 cluster.

Fig. S5 Some unselective reactions of acetylene hydrogenation on Pd_2Ag_2/TiO_2 -A-Ov surface. Activation energy, reaction heat, and corresponding geometry parameters of TS are pointed out. Bond lengths are in Å.

Reaction coordinate

Fig. S6 Optimized adsorption configurations (both side view and top view) of carbon atom on Pd_2Ag_2/TiO_2 -A-Ov system.

(c) bri-Ag-Ag

Fig. S7 Adsorption configurations of acetylene, vinyl, ethylene and ethyl at Pd₂Ag₂-anatase interface.

Fig. S8 Adsorption configurations of reactants and TSs at Pd₂Ag₂-anatase interface.

