Supporting Information

A DFT+U Study of Acetylene Selective Hydrogenation over Anatase Supported $\operatorname{Pd}_{\mathbf{a}} \mathbf{A g}_{\mathbf{b}}(\mathbf{a}+\mathrm{b}=4)$ Cluster

Ling-Dong Meng ${ }^{1}$ and Gui-Chang Wang ${ }^{1,2^{*}}$

(${ }^{1}$ Department of Chemistry, Tianjin Key Lab of Metal and Molecule-based Material Chemistry and Synergetic Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, P. R. China; ${ }^{2}$ State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P.R.China)
*Corresponding authors: Gui-Chang Wang. E-mail: wangguichang@nankai.edu.cn

Table S1 Bader charge for various model catalysts (unit: e)

species	Bader Charge	Δ
Pd_{4} cluster	64.00	0.50
$\mathrm{Pd}_{4}\left(\mathrm{TiO}_{2}\right.$-A-Ov $)$	64.50	
$\mathrm{Pd}_{3} \mathrm{Ag}$ cluster $^{\mathrm{PdAg}_{3}\left(\mathrm{TiO}_{2}-\mathrm{A}-\mathrm{Ov}\right)}$	59.00	0.28
$\mathrm{Pd}_{2} \mathrm{Ag}_{2}$ cluster	59.28	0.18
$\mathrm{Pd}_{2} \mathrm{Ag}_{2}\left(\mathrm{TiO}_{2}\right.$-A-Ov $)$	54.00	
PdAg_{3} cluster	54.18	0.08
$\mathrm{PdAg}_{3}\left(\mathrm{TiO}_{2}-\mathrm{A}-\mathrm{Ov}\right)$	49.00	0.08

Table S2 Energy decomposition of the calculated activation energy of the first three hydrogenation steps on $\mathrm{Pd}_{4} / \mathrm{TiO}_{2}$-A-Ov and $\mathrm{Pd}_{2} \mathrm{Ag}_{2} / \mathrm{TiO}_{2}$-A-Ov (unit: eV).

	$\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{H} \rightarrow \mathrm{C}_{2} \mathrm{H}_{3}$	$\begin{aligned} & \mathrm{Pd}_{2} \mathrm{Ag}_{2} \\ & \rightarrow \mathrm{C}_{2} \mathrm{H}_{3} \end{aligned}$	$\mathrm{C}_{2} \mathrm{H}_{3}+\mathrm{H} \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}$		$\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5}$			$\begin{aligned} & \mathrm{Pd}_{2} \underline{A g}_{2} \\ & \rightarrow \mathrm{C}_{2} \mathrm{H}_{6} \end{aligned}$
E_{a}	0.96	1.23	0.00	1.50	0.93	1.23	0.18	1.31
$E_{T S}^{a d s}$	-2.86	-1.78	-4.87	-2.90	-2.97	-1.78	-4.25	-2.59
$E_{T S}^{C_{2} \mathrm{H}_{2}}$	-1.35	-0.17	-2.08	-1.19	-1.38	-0.25	-1.35	-1.34
$E_{T S}^{H}$	-2.53	-1.92	-2.01	-1.54	-2.01	-1.86	-1.99	-1.77
$E_{T S}^{\text {int }}$	1.02	0.31	-0.78	-0.17	0.42	0.33	-0.91	0.52
$E_{I S}^{\text {coads }}$	-3.81	-3.01	-4.87	-4.40	-3.90	-3.01	-4.43	-3.90
$E_{I S}^{C_{2} \mathrm{H}_{2}}$	-1.16	-0.21	-2.12	-1.74	-1.19	-0.41	-1.42	-1.19
$E_{I S}^{H}$	-2.92	-2.12	-2.51	-2.12	-2.53	-2.22	-2.14	-2.19
$E_{I S}^{\text {int }}$	0.27	-0.67	-0.24	-0.53	-0.18	-0.38	-0.87	-0.52
$\Delta\left(\sum E_{\text {frag }}\right)$	0.21	0.25	0.54	1.14	0.33	0.52	0.22	0.27
$\Delta E_{\text {int }}$	0.75	0.98	-0.54	0.36	0.60	0.71	-0.04	1.04

Note: The $E_{T s}^{a d s}$ is the adsorption energy of the TS, which can be expressed by the following formula:46,60 $E_{T S}^{a d s}=E_{T S}^{C_{2} H_{x}}+E_{T S}^{H}+E_{T S}^{\text {int }}$. Here, $E_{T S}^{C_{2} H_{x}}, E_{T S}^{H}$, and $E_{T S}^{\text {int }}$ are the adsorption energy of the gaseous $\mathrm{C}_{2} \mathrm{H}_{2}$, H and interaction between the two fragments at the TS. Analogously, $E_{I S}^{\text {coads }}$ is the co-adsorption energy of IS and it is shown in the following formula: $E_{I S}^{\text {coads }}=E_{I S}^{C_{2} H_{x}}+E_{I S}^{H}+E_{I S}^{\text {int }}$. Here, $E_{I S}^{C_{2} H_{x}}, E_{I S}^{H}$, and $E_{I S}^{\text {int }}$ are the adsorption energy of the gaseous $\mathrm{C}_{2} \mathrm{H}_{\mathrm{x}}, \mathrm{H}$ and interaction between the two fragments at the IS. Consequently, the variations of both the rebonding and adsorption energy summed over the fragments $\Delta\left(\sum E_{\text {frag }}\right)$ and the variations of the interaction energy ($\Delta E_{\text {int }}$) make up the activation energy E_{a}, that is $E_{a}=\Delta\left(\sum E_{f r a g}\right)+\Delta E_{\mathrm{int}}$.

Fig. S1 The relationship between the number of Pd atom and the charge transfer

Fig.S2 Adsorption configurations of TSs on $\mathrm{Pd}_{\mathrm{a}} \mathrm{Ag}_{\mathrm{b}} / \mathrm{TiO}_{2}-\mathrm{A}-\mathrm{Ov}$

$\mathrm{Pd}_{3} \mathrm{Ag} / \mathrm{TiO}_{2}-\mathrm{A}-\mathrm{Ov}$

$\mathrm{Pd}_{2} \mathrm{Ag}_{2} / \mathrm{TiO}_{2}-\mathrm{A}-\mathrm{Ov}$

$\mathrm{Pd}_{2} \mathrm{Ag}_{2} \mathrm{C} / \mathrm{TiO}_{2}$-A-Ov

Fig. S3 Adsorption configurations of acetylene, vinyl, ethylene and ethyl on $\mathrm{Pd}_{2} \mathrm{Ag}_{2} / \mathrm{Pd}(111)$ and $\mathrm{Pd}_{2} \mathrm{Ag}_{2}$ cluster.

Fig.S4 Adsorption configurations of TSs on $\mathrm{Pd}_{2} \mathrm{Ag}_{2} / \mathrm{Pd}(111)$ and $\mathrm{Pd}_{2} \mathrm{Ag}_{2}$ cluster.

Fig. S5 Some unselective reactions of acetylene hydrogenation on $\mathrm{Pd}_{2} \mathrm{Ag}_{2} / \mathrm{TiO}_{2}-\mathrm{A}-\mathrm{Ov}$ surface. Activation energy, reaction heat, and corresponding geometry parameters of TS are pointed out. Bond lengths are in Å.

Fig. S6 Optimized adsorption configurations (both side view and top view) of carbon atom on $\mathrm{Pd}_{2} \mathrm{Ag}_{2} / \mathrm{TiO}_{2}-\mathrm{A}-\mathrm{Ov}$ system.

(a) top- Ag

(b) bri-Pd-Ag

(c) bri-Ag-Ag

Fig. S7 Adsorption configurations of acetylene, vinyl, ethylene and ethyl at $\mathrm{Pd}_{2} \mathrm{Ag}_{2}$-anatase interface.

Fig. S8 Adsorption configurations of reactants and TSs at $\mathrm{Pd}_{2} \mathrm{Ag}_{2}$-anatase interface.

