Table S1 Tested results of cutoff energy, smearing width and k-point mesh by using

CO at the top site of Co(0001)

Test of cutoff energy by RPBE functional					
Cutoff energy	Eads				
350	-1.36				
400	-1.37				
450	-1.37				
Test of k points by RPBE functional					
k-point mesh	Eads				
3×3×1	-1.32				
5×5×1	-1.37				
7×7×1	-1.36				
Test of smearing width by RPBE					
functional					
0.05	-1.37				
0.1	-1.37				
0.2	-1.35				

Configurations	Two-side model		One-side model					
	$E_{\rm ads}$	$d_{ ext{C-O}}$	$E_{\rm ads}$	$d_{ ext{C-O}}$				
top	-1.36	1.173	-1.37	1.173				
fcc	-1.29	1.198	-1.27	1.199				
hcp	-1.27	1.200	-1.27	1.201				
bridge	-1.23	1.192	-1.23	1.194				

Table S2 Comparison of adsorption energies (eV) and geometric parameters of CO on the one-side and two-side model by RPBE functional

Table S3 $riangle H_{cal}$ (eV) of alkane, alkene and alkanol formation reactions calculated by 6-311+G(d,p) and cc-pVTZ basis sets, as well as phonon calculation using VASP code

	$ riangle H_{cal}$	$ riangle H_{cal}$	$ riangle H_{cal}$	
	6-	cc-pVTZ	vasp	$ riangle H_{exp}$
	311+G(d,p)			
CH_4	-2.17	-2.12	-2.12	-2.14
C_2H_6	-3.60	-3.49	-3.42	-3.59
C_3H_8	-5.10	-4.96	-5.02	-5.16
C_6H_{14}	-9.58	-9.25	-9.46	-9.90
$C_{10}H_{22}$	-15.56	-15.03	-15.35	-16.19
C_2H_4	-2.21	-2.11	-2.21	-2.18
C_3H_6	-3.87	-3.74	-3.87	-3.87
$C_{6}H_{12}$	-8.35	-8.02	-8.25	-8.60
$C_{10}H_{20}$	-14.33	-13.78	-14.09	-14.90
CH ₃ OH	-0.99	-0.94	-0.97	-0.94
C ₂ H ₅ OH	-2.65	-2.59	-2.60	-2.65
C ₃ H ₇ OH	-4.14	-4.05	-4.07	-4.40
C ₆ H ₁₃ OH	-8.62	-8.34	-8.50	-8.93
$C_{10}H_{21}OH$	-14.60	-14.09	-14.40	-15.11

Fig. S1 CO adsorbed at the top, fcc, hcp and bridge sites of Co(0001)

Fig. S2 Co(0001) slab model. (a) Topview, (b) Sideview