Supplementary Materials:

Quasi-planar aromatic B_{36} and B_{36}^- clusters: all-boron analogues of coronene[†]

Qiang Chen,^a Guang-Feng Wei,^b Wen-Juan Tian,^a Hui Bai,^a Zhi-Pan Liu,^b

Hua-Jin Zhai, $*^{ac}$ and Si-Dian Li $*^{a}$

^aNanocluster Laboratory, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China ^bDepartment of Chemistry, Fudan University, Shanghai 200433, China

^cState Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan 030006, China

E-mail: hj.zhai@sxu.edu.cn (H.J.Z.); lisidian@sxu.edu.cn (S.D.L.)

Fig. S1. Low-lying isomers of B_{36} , with their relative energies indicated in eV at PBE0/6-311+G* and TPSSh/6-311+G*(in *italic*) levels.

C_{a} ¹ A.	Ca. ¹ A.	C. ¹ A	C ¹ A′	C. ¹ A
	$C_{2v} A_1$ +1 10	+1 40	+1 51	+1 52
0.00	+0.88	+1 19	+1 44	+1.85
0.00	10.00	1.15	12.77	11.05
C ₁ ¹ A	C _s ¹ A′	C ₁ ¹ A	C ₁ ¹ A	C ₁ ¹ A
+1.57	+1.75	+1.83	+1.84	+1.92
+1.50	+1.66	+1.73	+1.75	+2.27
C _s ¹ A′	$C_1 A$	C ₁ ¹ A	C ₁ ¹ A	$D_{9}^{1}A_{1}$
+1.93	+1.95	+2.00	+2.04	+2.13
+2.33	+2.12	+1.80	+1.92	+1.41
C ₁ ¹ A	C ₁ ¹ A	C ₁ ¹ A	C1 ¹ A	C1 ¹ A
+2.16	+2.17	+2.21	+2.22	+2.24
C ₁ ¹ A	C ₁ ¹ A	C ₁ ¹ A	C_1 ¹ A	C ₁ ¹ A
+2.32	+2.37	+2.37	+2.37	+2.50

Fig. S2. Low-lying isomers of B_{36}^{-} , with their relative energies indicated in eV at PBE0/6-311+G* and TPSSh/6-311+G*(in *italic*) levels.

 C_1 2A +2.04

 $C_1 \, ^2 A$ +2.22

 $C_1^2 A$ +2.25

 $C_1^2 A$ +2.29

+2.27

C₁ ²A +2.77 C_{2h} ²B_g +3.63

Fig. S3. Optimized geometries (bond lengths labeled in Å) of (**a**) $C_{6v} B_{36}(^{1}A_{1})$ and (**b**) $C_{2v} B_{36}^{-}(^{2}A_{1})$ at PBE0/6-311+G* level.

 $C_{6v} B_{36} (^1A_1)$

 $C_{2v} B_{36}^{-}(^{2}A_{1})$

Fig. S4. Optimized geometries (bond lengths labeled in Å) of (**a**) $C_{6v} B_{36}H_6({}^{1}A_1)$ and (**b**) $C_{2v} B_{36}H_6^{-}({}^{2}A_1)$ at PBE0/6-311+G* level.

 $C_{2v} B_{36} H_6^{-} (^2 A_1)$

Fig. S5. Comparison of the π molecular orbitals of (a) $C_{6v} B_{36}$, (b) $C_{6v} B_{36}H_6$, and (c) $D_{6h} C_{24}H_{12}$.